XLS-R-2B-21-EN / app.py
patrickvonplaten's picture
Update app.py
786d4c8
raw
history blame
1.94 kB
import os
os.system("pip install gradio==2.8.0b2")
import gradio as gr
import librosa
from transformers import AutoFeatureExtractor, AutoTokenizer, SpeechEncoderDecoderModel
model_name = "facebook/wav2vec2-xls-r-2b-21-to-en"
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
model = SpeechEncoderDecoderModel.from_pretrained(model_name)
def process_audio_file(file):
data, sr = librosa.load(file)
if sr != 16000:
data = librosa.resample(data, sr, 16000)
input_values = feature_extractor(data, return_tensors="pt").input_values
return input_values
def transcribe(file_mic, file_upload):
warn_output = ""
if (file_mic is not None) and (file_upload is not None):
warn_output = "WARNING: You've uploaded an audio file and used the microphone. The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
file = file_mic
elif (file_mic is None) and (file_upload is None):
return "ERROR: You have to either use the microphone or upload an audio file"
elif file_mic is not None:
file = file_mic
else:
file = file_upload
input_values = process_audio_file(file)
sequences = model.generate(input_values, num_beams=1, max_length=30)
transcription = tokenizer.batch_decode(sequences, skip_special_tokens=True)
return warn_output + transcription[0]
iface = gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="microphone", type='filepath', optional=True),
gr.inputs.Audio(source="upload", type='filepath', optional=True),
],
outputs="text",
layout="horizontal",
theme="huggingface",
title="XLS-R 2B 21-to-EN Speech Translation",
description="A simple interface to translate from 21 spoken languages to written English.",
)
iface.launch()