liangfeng commited on
Commit
e66e6e4
·
1 Parent(s): 583456e
Files changed (1) hide show
  1. app.py +73 -4
app.py CHANGED
@@ -1,7 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- iface.launch()
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates.
2
+ # Copyright (c) Meta Platforms, Inc. All Rights Reserved
3
+
4
+ import multiprocessing as mp
5
+
6
+ import numpy as np
7
+ from PIL import Image
8
+
9
+ from detectron2.config import get_cfg
10
+
11
+ from detectron2.projects.deeplab import add_deeplab_config
12
+ from detectron2.data.detection_utils import read_image
13
+ from open_vocab_seg import add_ovseg_config
14
+ from open_vocab_seg.utils import VisualizationDemo
15
+
16
  import gradio as gr
17
 
18
+ def setup_cfg(config_file):
19
+ # load config from file and command-line arguments
20
+ cfg = get_cfg()
21
+ add_deeplab_config(cfg)
22
+ add_ovseg_config(cfg)
23
+ cfg.merge_from_file(config_file)
24
+ cfg.freeze()
25
+ return cfg
26
+
27
+
28
+ def inference(class_names, input_img):
29
+ mp.set_start_method("spawn", force=True)
30
+ config_file = './configs/ovseg_swinB_vitL_demo.yaml'
31
+ cfg = setup_cfg(config_file)
32
+
33
+ demo = VisualizationDemo(cfg)
34
+
35
+ class_names = class_names.split(',')
36
+ img = read_image(input_img, format="BGR")
37
+ _, visualized_output = demo.run_on_image(img, class_names)
38
+
39
+ return Image.fromarray(np.uint8(visualized_output.get_image())).convert('RGB')
40
+
41
+ # demo = gr.Interface(fn=greet, inputs="text", outputs="text")
42
+ # demo.launch()
43
+
44
+
45
+ examples = [['Oculus, Ukulele', './resources/demo_samples/sample_03.jpeg'],]
46
+ output_labels = ['segmentation map']
47
+
48
+ title = 'OVSeg'
49
+
50
+ description = """
51
+ Gradio Demo for Open-Vocabulary Semantic Segmentation with Mask-adapted CLIP \n
52
+ You may click on of the examples or upload your own image. \n
53
+ OVSeg could perform open vocabulary segmentation, you may input more classes (seperate by comma).
54
+ """
55
+
56
+ article = """
57
+ <p style='text-align: center'>
58
+ <a href='https://arxiv.org/abs/2210.04150' target='_blank'>
59
+ Open-Vocabulary Semantic Segmentation with Mask-adapted CLIP
60
+ </a>
61
+ |
62
+ <a href='https://github.com' target='_blank'>Github Repo</a></p>
63
+ """
64
 
65
+ gr.Interface(
66
+ inference,
67
+ inputs=[
68
+ gr.inputs.Textbox(
69
+ lines=1, placeholder=None, default='', label='class names'),
70
+ gr.inputs.Image(type='filepath')
71
+ ],
72
+ outputs=gr.outputs.Image(label='segmentation map'),
73
+ title=title,
74
+ description=description,
75
+ article=article,
76
+ examples=examples).launch(enable_queue=True)