File size: 13,693 Bytes
ef16dc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import os, io, csv, math, random
import json
import numpy as np
from einops import rearrange
from decord import VideoReader

import torch
import torchvision.transforms as transforms
from torch.utils.data.dataset import Dataset

from diffusers.utils import logging

logger = logging.get_logger(__name__)

class WebVid10M(Dataset):
    def __init__(
            self,
            json_path, video_folder=None,
            sample_size=256, sample_stride=4, sample_n_frames=16,
            is_image=False,
            **kwargs,
        ):
        logger.info(f"loading annotations from {json_path} ...")
        with open(json_path, 'rb') as json_file:
            json_list = list(json_file)
        self.dataset = [json.loads(json_str) for json_str in json_list]
        self.length = len(self.dataset)
        logger.info(f"data scale: {self.length}")

        self.video_folder    = video_folder
        self.sample_stride   = sample_stride if isinstance(sample_stride, int) else tuple(sample_stride)
        self.sample_n_frames = sample_n_frames
        self.is_image        = is_image
        
        sample_size = tuple(sample_size) if not isinstance(sample_size, int) else (sample_size, sample_size)
        self.pixel_transforms = transforms.Compose([
            transforms.RandomHorizontalFlip(),
            transforms.Resize(sample_size[0], antialias=None),
            transforms.CenterCrop(sample_size),
            transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
        ])
    
    def get_batch(self, idx):
        video_dict = self.dataset[idx]
        video_relative_path, name = video_dict['file'], video_dict['text']
        
        if self.video_folder is not None:
            if video_relative_path[0] == '/':
                video_dir = os.path.join(self.video_folder, os.path.basename(video_relative_path))
            else:
                video_dir = os.path.join(self.video_folder, video_relative_path)
        else:
            video_dir = video_relative_path
        video_reader = VideoReader(video_dir)
        video_length = len(video_reader)
        
        if not self.is_image:
            if isinstance(self.sample_stride, int):
                stride = self.sample_stride
            elif isinstance(self.sample_stride, tuple):
                stride = random.randint(self.sample_stride[0], self.sample_stride[1])
            clip_length = min(video_length, (self.sample_n_frames - 1) * stride + 1)
            start_idx   = random.randint(0, video_length - clip_length)
            batch_index = np.linspace(start_idx, start_idx + clip_length - 1, self.sample_n_frames, dtype=int)
        else:
            frame_difference = random.randint(2, self.sample_n_frames)
            clip_length = min(video_length, (frame_difference - 1) * self.sample_stride + 1)
            start_idx = random.randint(0, video_length - clip_length)
            batch_index = [start_idx, start_idx + clip_length - 1]

        pixel_values = torch.from_numpy(video_reader.get_batch(batch_index).asnumpy()).permute(0, 3, 1, 2).contiguous()
        pixel_values = pixel_values / 255.
        del video_reader
        
        return pixel_values, name

    def __len__(self):
        return self.length

    def __getitem__(self, idx):
        while True:
            try:
                pixel_values, name = self.get_batch(idx)
                break

            except Exception as e:
                idx = random.randint(0, self.length-1)

        pixel_values = self.pixel_transforms(pixel_values)
        sample = dict(pixel_values=pixel_values, text=name)
        return sample


class Pexels(Dataset):
    def __init__(
            self,
            json_path, caption_json_path, video_folder=None,
            sample_size=256, sample_duration=1, sample_fps=8,
            is_image=False,
            **kwargs,
        ):
        logger.info(f"loading captions from {caption_json_path} ...")
        with open(caption_json_path, 'rb') as caption_json_file:
            caption_json_list = list(caption_json_file)
        self.caption_dict = {json.loads(json_str)['id']: json.loads(json_str)['text'] for json_str in caption_json_list}
        
        logger.info(f"loading annotations from {json_path} ...")
        with open(json_path, 'rb') as json_file:
            json_list = list(json_file)
        dataset = [json.loads(json_str) for json_str in json_list]

        self.dataset = []
        for data in dataset:
            data['text'] = self.caption_dict[data['id']]
            if data['height'] / data['width'] < 0.625:
                self.dataset.append(data)
        self.length = len(self.dataset)
        logger.info(f"data scale: {self.length}")

        self.video_folder    = video_folder
        self.sample_duration = sample_duration
        self.sample_fps      = sample_fps
        self.sample_n_frames = sample_duration * sample_fps
        self.is_image        = is_image
        
        sample_size = tuple(sample_size) if not isinstance(sample_size, int) else (sample_size, sample_size)
        self.pixel_transforms = transforms.Compose([
            transforms.RandomHorizontalFlip(),
            transforms.Resize(sample_size[0], antialias=None),
            transforms.CenterCrop(sample_size),
            transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
        ])
    
    def get_batch(self, idx):
        video_dict = self.dataset[idx]
        video_relative_path, name = video_dict['file'], video_dict['text']
        fps = video_dict['fps']
        
        if self.video_folder is not None:
            if video_relative_path[0] == '/':
                video_dir = os.path.join(self.video_folder, os.path.basename(video_relative_path))
            else:
                video_dir = os.path.join(self.video_folder, video_relative_path)
        else:
            video_dir = video_relative_path
        video_reader = VideoReader(video_dir)
        video_length = len(video_reader)
        
        if not self.is_image:
            clip_length = min(video_length, math.ceil(fps * self.sample_duration))
            start_idx   = random.randint(0, video_length - clip_length)
            batch_index = np.linspace(start_idx, start_idx + clip_length - 1, self.sample_n_frames, dtype=int)
        else:
            frame_difference = random.randint(2, self.sample_n_frames)
            sample_stride = math.ceil((fps * self.sample_duration) / (self.sample_n_frames - 1) - 1)
            clip_length = min(video_length, (frame_difference - 1) * sample_stride + 1)
            start_idx = random.randint(0, video_length - clip_length)
            batch_index = [start_idx, start_idx + clip_length - 1]

        pixel_values = torch.from_numpy(video_reader.get_batch(batch_index).asnumpy()).permute(0, 3, 1, 2).contiguous()
        pixel_values = pixel_values / 255.
        del video_reader
        
        return pixel_values, name

    def __len__(self):
        return self.length

    def __getitem__(self, idx):
        while True:
            try:
                pixel_values, name = self.get_batch(idx)
                break

            except Exception as e:
                idx = random.randint(0, self.length-1)

        pixel_values = self.pixel_transforms(pixel_values)
        sample = dict(pixel_values=pixel_values, text=name)
        return sample


class JointDataset(Dataset):
    def __init__(
            self,
            webvid_config, pexels_config,
            sample_size=256,
            sample_duration=None, sample_fps=None, sample_stride=None, sample_n_frames=None,
            is_image=False,
            **kwargs,
        ):
        assert (sample_duration is None and sample_fps is None) or (sample_duration is not None and sample_fps is not None), "sample_duration and sample_fps should be both None or not None"
        if sample_duration is not None and sample_fps is not None:
            assert sample_stride is None, "when sample_duration and sample_fps are not None, sample_stride should be None"
        if sample_stride is not None:
            assert sample_fps is None and sample_duration is None, "when sample_stride is not None, sample_duration and sample_fps should be both None"

        self.dataset = []

        if pexels_config.enable:
            logger.info(f"loading pexels dataset")
            logger.info(f"loading captions from {pexels_config.caption_json_path} ...")
            with open(pexels_config.caption_json_path, 'rb') as caption_json_file:
                caption_json_list = list(caption_json_file)
            self.caption_dict = {json.loads(json_str)['id']: json.loads(json_str)['text'] for json_str in caption_json_list}
            
            logger.info(f"loading annotations from {pexels_config.json_path} ...")
            with open(pexels_config.json_path, 'rb') as json_file:
                json_list = list(json_file)
            dataset = [json.loads(json_str) for json_str in json_list]

            for data in dataset:
                data['text'] = self.caption_dict[data['id']]
                data['dataset'] = 'pexels'
                if data['height'] / data['width'] < 0.625:
                    self.dataset.append(data)
        
        if webvid_config.enable:
            logger.info(f"loading webvid dataset")
            logger.info(f"loading annotations from {webvid_config.json_path} ...")
            with open(webvid_config.json_path, 'rb') as json_file:
                json_list = list(json_file)
            dataset = [json.loads(json_str) for json_str in json_list]
            for data in dataset:
                data['dataset'] = 'webvid'
            self.dataset.extend(dataset)

        self.length = len(self.dataset)
        logger.info(f"data scale: {self.length}")

        self.pexels_folder   = pexels_config.video_folder
        self.webvid_folder   = webvid_config.video_folder
        self.sample_duration = sample_duration
        self.sample_fps      = sample_fps
        self.sample_n_frames = sample_duration * sample_fps if sample_n_frames is None else sample_n_frames
        self.sample_stride   = sample_stride if (sample_stride is None) or (sample_stride is not None and isinstance(sample_stride, int)) else tuple(sample_stride)
        self.is_image        = is_image
        
        sample_size = tuple(sample_size) if not isinstance(sample_size, int) else (sample_size, sample_size)
        self.pixel_transforms = transforms.Compose([
            transforms.RandomHorizontalFlip(),
            transforms.Resize(sample_size[0], antialias=None),
            transforms.CenterCrop(sample_size),
            transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
        ])
    
    def get_batch(self, idx):
        video_dict = self.dataset[idx]
        video_relative_path, name = video_dict['file'], video_dict['text']

        if video_dict['dataset'] == 'pexels':
            video_folder = self.pexels_folder
        elif video_dict['dataset'] == 'webvid':
            video_folder = self.webvid_folder
        else:
            raise NotImplementedError
        
        if video_folder is not None:
            if video_relative_path[0] == '/':
                video_dir = os.path.join(video_folder, os.path.basename(video_relative_path))
            else:
                video_dir = os.path.join(video_folder, video_relative_path)
        else:
            video_dir = video_relative_path
        video_reader = VideoReader(video_dir)
        video_length = len(video_reader)
        
        stride = None
        if not self.is_image:
            if self.sample_duration is not None:
                fps = video_dict['fps']
                clip_length = min(video_length, math.ceil(fps * self.sample_duration))
            elif self.sample_stride is not None:
                if isinstance(self.sample_stride, int):
                    stride = self.sample_stride
                elif isinstance(self.sample_stride, tuple):
                    stride = random.randint(self.sample_stride[0], self.sample_stride[1])
                clip_length = min(video_length, (self.sample_n_frames - 1) * stride + 1)

            start_idx   = random.randint(0, video_length - clip_length)
            batch_index = np.linspace(start_idx, start_idx + clip_length - 1, self.sample_n_frames, dtype=int)

        else:
            frame_difference = random.randint(2, self.sample_n_frames)
            if self.sample_duration is not None:
                fps = video_dict['fps']
                sample_stride = math.ceil((fps * self.sample_duration) / (self.sample_n_frames - 1) - 1)
            elif self.sample_stride is not None:
                sample_stride = self.sample_stride
            
            clip_length = min(video_length, (frame_difference - 1) * sample_stride + 1)
            start_idx = random.randint(0, video_length - clip_length)
            batch_index = [start_idx, start_idx + clip_length - 1]

        pixel_values = torch.from_numpy(video_reader.get_batch(batch_index).asnumpy()).permute(0, 3, 1, 2).contiguous()
        pixel_values = pixel_values / 255.
        del video_reader
        
        return pixel_values, name, stride

    def __len__(self):
        return self.length

    def __getitem__(self, idx):
        while True:
            try:
                pixel_values, name, stride = self.get_batch(idx)
                break

            except Exception as e:
                idx = random.randint(0, self.length-1)

        pixel_values = self.pixel_transforms(pixel_values)
        sample = dict(pixel_values=pixel_values, text=name, stride=stride)
        return sample