Spaces:
Running
Running
Upload 2 files
Browse files- app.py +67 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from swarmauri.standard.llms.concrete.GroqModel import GroqModel
|
2 |
+
from swarmauri.standard.messages.concrete.SystemMessage import SystemMessage
|
3 |
+
from swarmauri.standard.agents.concrete.SimpleConversationAgent import SimpleConversationAgent
|
4 |
+
from swarmauri.standard.conversations.concrete.MaxSystemContextConversation import MaxSystemContextConversation
|
5 |
+
import gradio as gr
|
6 |
+
import os
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
# Fetch the API key from environment variables
|
9 |
+
|
10 |
+
load_dotenv()
|
11 |
+
|
12 |
+
# Fetch the API key from environment variables
|
13 |
+
API_KEY = os.getenv("GROQ_API_KEY")
|
14 |
+
|
15 |
+
|
16 |
+
# Initialize the GroqModel with the API key to access allowed models
|
17 |
+
llm = GroqModel(api_key=API_KEY)
|
18 |
+
|
19 |
+
# Get the available models from the llm instance
|
20 |
+
allowed_models = llm.allowed_models
|
21 |
+
|
22 |
+
# Initialize a MaxSystemContextConversation instance
|
23 |
+
conversation = MaxSystemContextConversation()
|
24 |
+
|
25 |
+
# Define a function to dynamically change the model based on dropdown input
|
26 |
+
def load_model(selected_model):
|
27 |
+
return GroqModel(api_key=API_KEY, name=selected_model)
|
28 |
+
|
29 |
+
# Define the function to interact with the agent
|
30 |
+
def converse(input_text, history, system_context, model_name):
|
31 |
+
print(f"System context: {system_context}")
|
32 |
+
print(f"Selected model: {model_name}")
|
33 |
+
|
34 |
+
# Initialize the model dynamically based on user selection
|
35 |
+
llm = load_model(model_name)
|
36 |
+
|
37 |
+
# Initialize the agent with the new model
|
38 |
+
agent = SimpleConversationAgent(llm=llm, conversation=conversation)
|
39 |
+
|
40 |
+
# Set the system context for the agent
|
41 |
+
agent.conversation.system_context = SystemMessage(content=system_context)
|
42 |
+
# Ensure input text is a string
|
43 |
+
input_text = str(input_text)
|
44 |
+
|
45 |
+
print(conversation.history)
|
46 |
+
|
47 |
+
# Execute the input command with the agent
|
48 |
+
result = agent.exec(input_text)
|
49 |
+
|
50 |
+
print(result, type(result))
|
51 |
+
|
52 |
+
# Return the result as a string
|
53 |
+
return str(result)
|
54 |
+
|
55 |
+
# Set up the Gradio ChatInterface with a dropdown for model selection
|
56 |
+
interface = gr.ChatInterface(
|
57 |
+
fn=converse,
|
58 |
+
additional_inputs=[
|
59 |
+
gr.Textbox(label="System Context"),
|
60 |
+
gr.Dropdown(label="Model Name", choices=allowed_models, value=allowed_models[0])
|
61 |
+
],
|
62 |
+
title="A system context conversation",
|
63 |
+
description="Interact with the agent using a selected model and system context."
|
64 |
+
)
|
65 |
+
|
66 |
+
# Start the Gradio interface
|
67 |
+
interface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub==0.22.2
|
2 |
+
swarmauri[full]==0.4.1
|
3 |
+
python-dotenv
|