File size: 4,117 Bytes
6db9247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a70a3d
6db9247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc69b77
6db9247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34c5ca8
6db9247
 
 
 
 
 
 
 
 
 
 
8f459b9
6db9247
 
122fd53
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os
import openai

os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["OPENAI_API_KEY"]
global agent


def create_agent():

    from langchain.chat_models import ChatOpenAI
    from langchain.chains.conversation.memory import ConversationSummaryBufferMemory
    from langchain.chains import ConversationChain

    global agent

    llm = ChatOpenAI(model_name="gpt-4o")
    memory = ConversationSummaryBufferMemory(llm=llm, max_token_limit=1000)
    agent = ConversationChain(llm=llm, memory=memory, verbose=True)

    return "Successful!"


def formatted_response(docs, question, response, state):

    formatted_output = response + "\n\nSources"

    for i, doc in enumerate(docs):
        source_info = doc.metadata.get("source", "Unknown source")
        page_info = doc.metadata.get("page", None)

        doc_name = source_info.split("/")[-1].strip()

        if page_info is not None:
            formatted_output += f"\n{doc_name}\tpage no {page_info}"
        else:
            formatted_output += f"\n{doc_name}"

    state.append((question, formatted_output))
    return state, state


def search_docs(prompt, question, state):

    from langchain.embeddings.openai import OpenAIEmbeddings
    from langchain.vectorstores import FAISS
    from langchain.callbacks import get_openai_callback

    global agent
    agent = agent

    state = state or []

    embeddings = OpenAIEmbeddings()
    docs_db = FAISS.load_local("/home/user/app/docs_db/", embeddings, allow_dangerous_deserialization=True)
    docs = docs_db.similarity_search(question)

    prompt += "\n\n"
    prompt += question
    prompt += "\n\n"
    prompt += str(docs)

    with get_openai_callback() as cb:
        response = agent.predict(input=prompt)
        print(cb)

    return formatted_response(docs, question, response, state)


import gradio as gr

css = """
.col{
    max-width: 75%;
    margin: 0 auto;
    display: flex;
    flex-direction: column;
    justify-content: center;
    align-items: center;
}
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown("## <center>All in One Document Chatting App</center>")

    with gr.Tab("Chat With Your Documents"):
        with gr.Column(elem_classes="col"):

            with gr.Tab("Upload and Process Documents"):
                with gr.Column():

                    # docs_upload_input = gr.Files(label="Upload File(s)")
                    # docs_upload_button = gr.Button("Upload")
                    # docs_upload_output = gr.Textbox(label="Output")

                    # docs_process_button = gr.Button("Process")
                    # docs_process_output = gr.Textbox(label="Output")

                    create_agent_button = gr.Button("Create Agent")
                    create_agent_output = gr.Textbox(label="Output")

                    # gr.ClearButton([docs_upload_input, docs_upload_output, docs_process_output, create_agent_output])
                    gr.ClearButton([create_agent_output])
            with gr.Tab("Query Documents"):
                with gr.Column():

                    docs_prompt_input = gr.Textbox(label="Custom Prompt")

                    docs_chatbot = gr.Chatbot(label="Chats")
                    docs_state = gr.State()

                    docs_search_input = gr.Textbox(label="Question")
                    docs_search_button = gr.Button("Search")

                    gr.ClearButton([docs_prompt_input, docs_search_input])

    ########################################################################################################

    # docs_upload_button.click(save_docs, inputs=docs_upload_input, outputs=docs_upload_output)
    # docs_process_button.click(process_docs, inputs=None, outputs=docs_process_output)
    create_agent_button.click(create_agent, inputs=None, outputs=create_agent_output)

    docs_search_button.click(
        search_docs,
        inputs=[docs_prompt_input, docs_search_input, docs_state],
        outputs=[docs_chatbot, docs_state],
    )

    ########################################################################################################

demo.queue()
demo.launch()