Spaces:
Sleeping
Sleeping
File size: 35,280 Bytes
1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 e0f8e25 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 45e2cbf 1fbf6a6 e0f8e25 1fbf6a6 d9f8c17 1fbf6a6 45e2cbf 1fbf6a6 e0f8e25 1fbf6a6 45e2cbf e0f8e25 1fbf6a6 d9f8c17 1fbf6a6 d50b6ce 716aab8 e0f8e25 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 4a46c94 1fbf6a6 4a46c94 1fbf6a6 4a46c94 1fbf6a6 d9f8c17 45e2cbf 1fbf6a6 45e2cbf 1fbf6a6 4a46c94 e0f8e25 45e2cbf d9f8c17 1fbf6a6 4a46c94 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 ba06781 4a46c94 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 ba06781 d9f8c17 ba06781 d9f8c17 1fbf6a6 d9f8c17 ba06781 d9f8c17 ba06781 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 d9f8c17 1fbf6a6 e0f8e25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 |
import os
import shutil
import openai
import docx
import base64
import gradio as gr
import assemblyai as aai
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.document_loaders import DirectoryLoader
from langchain_community.document_loaders import TextLoader
from langchain_community.document_loaders import Docx2txtLoader
from langchain_community.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains.question_answering import load_qa_chain
from langchain_community.callbacks.manager import get_openai_callback
from langchain.llms import OpenAI
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_core.prompts import ChatPromptTemplate
from pydantic import BaseModel, Field
from langchain import PromptTemplate, LLMChain
os.environ["TOKENIZERS_PARALLELISM"] = "false"
aai.settings.api_key = os.environ.get("AAPI_KEY")
openai.api_key = os.environ.get("OPENAI_API_KEY")
embeddings = OpenAIEmbeddings()
client = OpenAI()
upload_dir="/home/user/app/file/"
upload_files_vector_db="/home/user/app/file_db/"
report_vector_db="/home/user/app/local_db/"
soap_dir="/home/user/app/soap_docs/"
sbar_dir="/home/user/app/sbar_docs/"
temp_reports_dir="/home/user/app/temp_reports/"
temp_vector_db="/home/user/app/temp_db/"
directories = [
upload_dir,
upload_files_vector_db,
report_vector_db,
soap_dir,
sbar_dir,
temp_reports_dir,
temp_vector_db
]
# Create each directory if it doesn't already exist
for directory in directories:
if not os.path.exists(directory):
os.makedirs(directory)
print(f"Created directory: {directory}")
else:
print(f"Directory already exists: {directory}")
llm = ChatOpenAI(model="gpt-4o-mini")
embedding_model = OpenAIEmbeddings()
# report_db = FAISS.load_local(report_vector_db, embeddings=embedding_model, allow_dangerous_deserialization=True)
qa_chain = load_qa_chain(ChatOpenAI(), chain_type="stuff")
"""# Page 1"""
def save_file(input_file):
os.makedirs(upload_dir, exist_ok=True)
for file in input_file:
shutil.copy(file.name, upload_dir)
return "File(s) saved successfully!"
def vectorise(input_dir, output_dir):
loader1 = DirectoryLoader(input_dir, glob="./*.pdf", loader_cls=PyPDFLoader)
document1 = loader1.load()
loader2 = DirectoryLoader(input_dir, glob="./*.txt", loader_cls=TextLoader)
document2 = loader2.load()
loader3 = DirectoryLoader(input_dir, glob="./*.docx", loader_cls=Docx2txtLoader)
document3 = loader3.load()
document1.extend(document2)
document1.extend(document3)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len)
docs = text_splitter.split_documents(document1)
file_db = FAISS.from_documents(docs, embeddings)
file_db.save_local(output_dir)
return "File(s) processed successfully!"
def merge_vectors(vectorDB_path):
docs_db1 = FAISS.load_local(report_vector_db, embeddings,allow_dangerous_deserialization=True)
docs_db2 = FAISS.load_local(vectorDB_path, embeddings,allow_dangerous_deserialization=True)
docs_db2.merge_from(docs_db1)
docs_db2.save_local(report_vector_db)
def formatted_response(docs, response):
formatted_output = response + "\n\nSources"
for i, doc in enumerate(docs):
source_info = doc.metadata.get('source', 'Unknown source')
page_info = doc.metadata.get('page', None)
file_name = source_info.split('/')[-1].strip()
if page_info is not None:
formatted_output += f"\n{file_name}\tpage no {page_info}"
else:
formatted_output += f"\n{file_name}"
return formatted_output
class AI_Medical_Report(BaseModel):
patient_name: str = Field(
...,
description="The full name of the patient if provided in the context. Otherwise Unknown"
)
soap_report: str = Field(
...,
description="""SOAP reports are a structured way to document patient interactions in healthcare:
Subjective: Patient’s own description of symptoms and concerns.
Objective: Factual, measurable data like exam results and vital signs.
Assessment: The healthcare provider’s diagnosis or clinical impression.
Plan: Recommended next steps, treatments, or follow-up actions."""
)
sbar_report: str = Field(
...,
description="""SBAR reports are a structured communication tool in healthcare to convey critical information efficiently:
Situation: Briefly state the current issue or reason for the communication.
Background: Provide context, such as patient history or relevant background info.
Assessment: Share your professional assessment of the problem.
Recommendation: Suggest actions or what you need from the listener."""
)
recommendations_for_doc: str = Field(
...,
description="provide 3 recommendations for the doctor like further questions to ask the patient, follow-up tests etc."
)
def assemblyai_STT(audio_url: str) -> str:
"""
Transcribes an audio file with speaker labels and returns a formatted string.
Parameters:
audio_url (str): URL or path to the audio file to be transcribed.
Returns:
str: A formatted string with each speaker's label and their corresponding text.
"""
# Configure transcription with speaker labels enabled
config = aai.TranscriptionConfig(speaker_labels=True)
# Perform transcription
transcript = aai.Transcriber().transcribe(audio_url, config)
# Format each utterance into a single string with speaker labels
transcription_output = "\n".join(
f"Speaker {utterance.speaker}: {utterance.text}" for utterance in transcript.utterances
)
return transcription_output
def openai_STT(audio_url: str) -> str:
from openai import OpenAI
client = OpenAI()
audio = open(audio_url, "rb")
transcript = client.audio.transcriptions.create(
model="whisper-1",
file=audio,
response_format="text"
)
output = transcript
return output
def generate_report(input_text: str = None, file_path: str = None) -> AI_Medical_Report:
"""
Generates a SOAP report from text or audio input using OpenAI's GPT-4 model.
Args:
client (OpenAI): Initialized OpenAI client.
input_text (str, optional): Text input containing the patient case study.
file_path (str, optional): Path to the audio file. Defaults to None.
model (str): Model name to use for generating the report. Defaults to "gpt-4o-audio-preview".
Returns:
SOAPExtraction: Parsed SOAP information including patient name, subjective, objective, assessment, plan, and doctor recommendations.
"""
from openai import OpenAI
client = OpenAI()
try:
# Prepare message content based on input type
messages = [{"role": "system", "content": (
"You are an AI medical assistant designed to help doctors. Your job is to convert the patient information into SOAP and SBAR reports. in the given JSON format"
)}]
if input_text:
# Text-based input
messages.append({"role": "user", "content": input_text})
model="gpt-4o"
elif file_path:
# Audio-based input: load and encode the audio file
model="gpt-4o-audio-preview-2024-10-01"
with open(file_path, "rb") as audio_file:
wav_data = audio_file.read()
encoded_string = base64.b64encode(wav_data).decode('utf-8')
messages.append({
"role": "user",
"content": [
{
"type": "text",
"text": "Please generate Medical reports based on the following audio input"
},
{
"type": "input_audio",
"input_audio": {
"data": encoded_string,
"format": "wav"
}
}
]
})
else:
raise ValueError("Either input_text or file_path must be provided.")
# Create completion request
completion = client.beta.chat.completions.parse(
model=model,
modalities=["text"],
messages=messages,
response_format=AI_Medical_Report
)
# Retrieve structured SOAP report
report = completion.choices[0].message.parsed
return report
except Exception as e:
print(f"An error occurred: {e}")
return None
# wrapper function for audio
def report_audio(audio_file: str = None, transcription_service: str = "OpenAI"):
return report_main(audio_file=audio_file,transcription_service=transcription_service)
# driver function for making reports
def report_main(input_text: str = None, audio_file: str = None, transcription_service: str = "OpenAI"):
"""
Generates a SOAP and SBAR report based on user input, either from text or audio.
Args:
input_text (str, optional): Text input from the user.
audio_file (str, optional): Path to the audio file (if provided).
transcription_service (str): Selected transcription service ("AssemblyAI" or "OpenAI").
Returns:
tuple: Contains patient_name, SOAP Report, SBAR_Report,
doctor_recommendations, and transcription_text (if audio input was used).
"""
from openai import OpenAI
client = OpenAI() # Initialize OpenAI client
# Initialize empty strings for the SOAP report components
patient_name = ""
soap_report=""
sbar_report = ""
doctor_recommendations = ""
transcription_text = ""
# Process input based on provided input_text or audio_file
if input_text:
# Generate SOAP report from text input
report = generate_report(input_text=input_text)
elif audio_file:
# Use selected transcription service for audio input
if transcription_service == "AssemblyAI":
transcription_text += assemblyai_STT(audio_file)
report = generate_report(input_text=transcription_text)
# print(transcription_text)
elif transcription_service == "OpenAI":
transcription_text += openai_STT(audio_file)
report = generate_report(input_text=transcription_text)
# print(transcription_text)
else:
raise ValueError("Invalid transcription service specified. Choose 'AssemblyAI' or 'OpenAI'.")
print(report)
# Assign values from the generated report
else:
raise ValueError("Either input_text or audio_file must be provided.")
patient_name = report.patient_name
soap_report = report.soap_report
sbar_report = report.sbar_report
doctor_recommendations = report.recommendations_for_doc
# Return structured output in a tuple
if audio_file:
return patient_name, soap_report, sbar_report, doctor_recommendations, transcription_text
else:
return patient_name, soap_report, sbar_report, doctor_recommendations
def delete_dir(dir):
try:
shutil.rmtree(dir)
return "Deleted Successfully"
except:
return "Already Deleted"
def save_reports(file_name, file_content, report_type ,destination_folder):
# Ensure the destination folder exists
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
# Define the path for the .docx file in the destination folder
destination_path = os.path.join(destination_folder, f"{report_type}_{file_name}.docx")
# Create a new document and add the SOAP response text
doc = docx.Document()
doc.add_paragraph(file_content)
# Save the document to the specified destination folder
doc.save(destination_path)
# Define and create the path for the temp folder
if not os.path.exists(temp_reports_dir):
os.makedirs(temp_reports_dir)
# Define the path for the temp copy
temp_path = os.path.join(temp_reports_dir, f"{report_type}_{file_name}.docx")
# Save a copy of the document in the temp folder
doc.save(temp_path)
return f"Successfully saved"
# driver function for save
def save_reports_main(file_name, soap_report_content, sbar_report_content):
# Save SOAP report
soap_result = save_reports(file_name, soap_report_content, "SOAP", soap_dir)
print(soap_result)
# Save SBAR report
sbar_result = save_reports(file_name, sbar_report_content, "SBAR", sbar_dir)
print(sbar_result)
# Vectorize the reports in the temporary directory
vectorise(temp_reports_dir, temp_vector_db)
# Check if report_vector_db is empty
if not os.listdir(report_vector_db): # If report_vector_db is empty
# Copy all contents from temp_vector_db to report_vector_db
for item in os.listdir(temp_vector_db):
source_path = os.path.join(temp_vector_db, item)
destination_path = os.path.join(report_vector_db, item)
if os.path.isdir(source_path):
shutil.copytree(source_path, destination_path)
else:
shutil.copy2(source_path, destination_path)
print("Copied contents from temp_vector_db to report_vector_db.")
else:
# Call merge_vectors to merge temp_vector_db into report_vector_db
merge_vectors(temp_vector_db)
print("Merged temp_vector_db into report_vector_db.")
# Clean up by deleting the temporary directories
delete_dir(temp_reports_dir)
delete_dir(temp_vector_db)
print("Deleted temporary directories.")
return "Reports saved successfully!"
"""#Page 2"""
def refresh_files(docs_dir):
if not os.path.exists(docs_dir):
os.makedirs(docs_dir)
file_list = []
for root, dirs, files in os.walk(docs_dir):
for file in files:
file_list.append(file)
return gr.Dropdown(choices=file_list, interactive=True)
def soap_refresh():
return refresh_files(soap_dir)
def sbar_refresh():
return refresh_files(sbar_dir)
def get_content(docs_dir, selected_file_name):
docx_path = os.path.join(docs_dir, selected_file_name)
# Check if the file exists and has a .docx extension
if not os.path.isfile(docx_path) or not docx_path.endswith('.docx'):
raise FileNotFoundError(f"File {selected_file_name} not found in {docs_dir} or is not a .docx file.")
try:
# Open and read the document
doc = docx.Document(docx_path)
paragraphs = [paragraph.text for paragraph in doc.paragraphs if paragraph.text]
return "\n\n".join(paragraphs) # Join paragraphs with double newlines for readability
except Exception as e:
raise IOError(f"An error occurred while reading the document: {e}")
def get_soap_report_content(selected_file_name):
return get_content(soap_dir, selected_file_name)
def get_sbar_report_content(selected_file):
return get_content(sbar_dir, selected_file)
# Updated generate_response function
def generate_response(message, history, soap_content):
from openai import OpenAI
client = OpenAI()
# Format history as expected by OpenAI's API
formatted_history = [{"role": "system", "content": "This conversation is based on the following SOAP report content:\n" + soap_content}]
for interaction in history:
if len(interaction) == 2:
user, assistant = interaction
formatted_history.append({"role": "user", "content": user})
formatted_history.append({"role": "assistant", "content": assistant})
# Add the latest user message to the formatted history
formatted_history.append({"role": "user", "content": message})
# Generate the assistant's response with streaming enabled
response = client.chat.completions.create(
model='gpt-4o-mini',
messages=formatted_history,
stream=True
)
partial_message = ""
for chunk in response:
if chunk.choices[0].delta.content is not None:
partial_message += chunk.choices[0].delta.content
yield partial_message # Yield each chunk as it comes
# Updated handle_chat_message function
def handle_chat_message(history, message, soap_content):
response_generator = generate_response(message, history, soap_content)
new_history = history + [[message, ""]] # Initialize with an empty assistant response
for partial_response in response_generator:
new_history[-1][1] = partial_response # Update assistant's response in history
yield new_history, "" # Stream the updated history and clear the text box
def ask_reports(docs_dir, doc_name, question):
# Construct the path to the docx file
docx_path = os.path.join(docs_dir, doc_name)
# Read and extract text from the .docx file
doc = docx.Document(docx_path)
extracted_text = f"You are provided with a medical report of a patient {doc_name}.\n\n"
text = ""
for paragraph in doc.paragraphs:
text += paragraph.text + "\n"
# Append the question to extracted text
extracted_text = extracted_text+text+"\n\nUse the report to answer the following question:\n" + question
if not text:
return "Failed to retrieve text from document."
from openai import OpenAI
client = OpenAI()
# Prepare the messages for the chat completion request
messages = [
{"role": "system", "content": "You are a helpful assistant with medical expertise."},
{"role": "user", "content": extracted_text}
]
# Use the ChatCompletion API to get a response
try:
completion = client.chat.completions.create(
model="gpt-4o",
messages=messages,
)
answer = completion.choices[0].message
except Exception as e:
return f"An error occurred: {e}"
return answer
def ask_soap(selected_file, question):
# Logic to answer the question based on the selected SOAP file
return f"Answer to '{question}' based on {selected_file}"
def ask_sbar(selected_file, question):
# Logic to answer the question based on the selected SBAR file
return f"Answer to '{question}' based on {selected_file}"
"""# page 3"""
def local_search(question):
embeddings = OpenAIEmbeddings()
file_db = FAISS.load_local(report_vector_db, embeddings, allow_dangerous_deserialization=True)
docs = file_db.similarity_search(question)
chain = load_qa_chain(llm, chain_type="stuff")
with get_openai_callback() as cb:
response = chain.run(input_documents=docs, question=question)
print(cb)
return formatted_response_local(docs, response)
def formatted_response_local(docs, response):
formatted_output = response + "\n\nSources"
for i, doc in enumerate(docs):
source_info = doc.metadata.get('source', 'Unknown source')
page_info = doc.metadata.get('page', None)
file_name = source_info.split('/')[-1].strip()
if page_info is not None:
formatted_output += f"\n{file_name}\tpage no {page_info}"
else:
formatted_output += f"\n{file_name}"
return formatted_output
def local_gpt(question):
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate(template=template, input_variables=["question"])
llm_chain = LLMChain(prompt=prompt, llm=llm)
response = llm_chain.run(question)
return response
"""# Page 4"""
def save2_docs(docs):
import shutil
import os
output_dir=upload_dir
if os.path.exists(output_dir):
shutil.rmtree(output_dir)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
for doc in docs:
shutil.copy(doc.name, output_dir)
return "Successful!"
global agent2
def create2_agent():
from langchain.chat_models import ChatOpenAI
from langchain.chains.conversation.memory import ConversationSummaryBufferMemory
from langchain.chains import ConversationChain
global agent2
llm = ChatOpenAI(model_name='gpt-4o-mini')
memory = ConversationSummaryBufferMemory(llm=llm, max_token_limit=1500)
agent2 = ConversationChain(llm=llm, memory=memory, verbose=True)
return "Successful!"
def search2_docs(prompt, question, state):
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.callbacks import get_openai_callback
global agent2
agent2 = agent2
state = state or []
embeddings = OpenAIEmbeddings()
docs_db = FAISS.load_local(upload_files_vector_db, embeddings, allow_dangerous_deserialization=True)
docs = docs_db.similarity_search(question)
prompt += "\n\n"
prompt += question
prompt += "\n\n"
prompt += str(docs)
with get_openai_callback() as cb:
response = agent2.predict(input=prompt)
print(cb)
return formatted_response(docs, question, response, state)
def delete2_docs():
import shutil
path1 = upload_dir
path2 = upload_files_vector_db
try:
shutil.rmtree(path1)
shutil.rmtree(path2)
return "Deleted Successfully"
except:
return "Already Deleted"
def process2_docs():
from langchain.document_loaders import PyPDFLoader
from langchain.document_loaders import DirectoryLoader
from langchain.document_loaders import TextLoader
from langchain.document_loaders import Docx2txtLoader
from langchain.document_loaders.csv_loader import CSVLoader
from langchain.document_loaders import UnstructuredExcelLoader
from langchain.vectorstores import FAISS
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
loader1 = DirectoryLoader(upload_dir, glob="./*.pdf", loader_cls=PyPDFLoader)
document1 = loader1.load()
loader2 = DirectoryLoader(upload_dir, glob="./*.txt", loader_cls=TextLoader)
document2 = loader2.load()
loader3 = DirectoryLoader(upload_dir, glob="./*.docx", loader_cls=Docx2txtLoader)
document3 = loader3.load()
loader4 = DirectoryLoader(upload_dir, glob="./*.csv", loader_cls=CSVLoader)
document4 = loader4.load()
loader5 = DirectoryLoader(upload_dir, glob="./*.xlsx", loader_cls=UnstructuredExcelLoader)
document5 = loader5.load()
document1.extend(document2)
document1.extend(document3)
document1.extend(document4)
document1.extend(document5)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
docs = text_splitter.split_documents(document1)
embeddings = OpenAIEmbeddings()
docs_db = FAISS.from_documents(docs, embeddings)
docs_db.save_local(upload_files_vector_db)
return "Successful!"
def formatted_response(docs, question, response, state):
formatted_output = response + "\n\nSources"
for i, doc in enumerate(docs):
source_info = doc.metadata.get('source', 'Unknown source')
page_info = doc.metadata.get('page', None)
doc_name = source_info.split('/')[-1].strip()
if page_info is not None:
formatted_output += f"\n{doc_name}\tpage no {page_info}"
else:
formatted_output += f"\n{doc_name}"
state.append((question, formatted_output))
return state, state
"""# UI"""
import gradio as gr
css = """
.col {
max-width: 70%;
margin: 0 auto;
display: flex;
flex-direction: column;
justify-content: center;
align-items: center;
}
"""
# Define the Gradio interface
with gr.Blocks(css=css) as demo:
gr.Markdown("## <center>Medical App</center>")
# Page 1----------------------------------------------------------------------
with gr.Tab("SOAP and SBAR Note Creation"):
# Tab for generating from audio
with gr.Tab("From Audio"):
with gr.Row():
with gr.Column():
audio_file = gr.Audio(label="Audio Input", type="filepath")
with gr.Column():
transcription_service = gr.Dropdown(label="Select Transcription Service", choices=["OpenAI", "AssemblyAI"], value="OpenAI")
gr.Markdown("<small>Upload an audio file or select a transcription service.</small>")
generate_with_audio_button = gr.Button("Generate Report", variant="primary")
# Shared output containers
patient_name_box_text = gr.Textbox(label="Patient Name", interactive=True, placeholder="Generated Patient Name", lines=1)
with gr.Row():
with gr.Column():
soap_report_box_text = gr.Textbox(label="SOAP Report", interactive=True, placeholder="Generated SOAP Report", lines=10)
with gr.Column():
sbar_report_box_text = gr.Textbox(label="SBAR Report", interactive=True, placeholder="Generated SBAR Report", lines=10)
audio_doctor_recommendations_box = gr.Textbox(label="Doctor Recommendations", interactive=False, placeholder="Recommendations", lines=5)
audio_transcription_box = gr.Textbox(label="Transcription Text", interactive=False, placeholder="Transcribed Text", lines=5)
# Click event for audio
generate_with_audio_button.click(
fn=report_audio,
inputs=[audio_file, transcription_service],
outputs=[
patient_name_box_text,
soap_report_box_text,
sbar_report_box_text,
audio_doctor_recommendations_box,
audio_transcription_box
]
)
# Add Save Report Button
with gr.Row():
save_button = gr.Button("Save Report", variant="secondary")
save_message = gr.Textbox(label="Save Status", interactive=False, placeholder="Status of the save operation", lines=1)
# Click event for Save Report Button using `patient_name_box_text` as the file name
save_button.click(
fn=save_reports_main,
inputs=[patient_name_box_text, soap_report_box_text, sbar_report_box_text],
outputs=[save_message]
)
# Tab for generating from text input
with gr.Tab("From Transcript"):
with gr.Column():
input_text = gr.Textbox(label="Patient Case Study (Text Input)", placeholder="Enter the patient case study here...", lines=7)
gr.Markdown("<small>Enter the patient's details, symptoms, and any relevant information.</small>")
generate_with_text_button = gr.Button("Generate Report", variant="primary")
# Shared output containers for this tab
patient_name_box_text = gr.Textbox(label="Patient Name", interactive=True, placeholder="Generated Patient Name", lines=1)
with gr.Row():
with gr.Column():
soap_report_box_text = gr.Textbox(label="SOAP Report", interactive=True, placeholder="Generated SOAP Report", lines=10)
with gr.Column():
sbar_report_box_text = gr.Textbox(label="SBAR Report", interactive=True, placeholder="Generated SBAR Report", lines=10)
doctor_recommendations_box_text = gr.Textbox(label="Doctor Recommendations", interactive=False, placeholder="Recommendations", lines=5)
# Click event for text
generate_with_text_button.click(
fn=report_main,
inputs=[input_text],
outputs=[
patient_name_box_text,
soap_report_box_text,
sbar_report_box_text,
doctor_recommendations_box_text
]
)
# Add Save Report Button
with gr.Row():
save_button = gr.Button("Save Report", variant="secondary")
save_message = gr.Textbox(label="Save Status", interactive=False, placeholder="Status of the save operation", lines=1)
# Click event for Save Report Button using `patient_name_box_text` as the file name
save_button.click(
fn=save_reports_main,
inputs=[patient_name_box_text, soap_report_box_text, sbar_report_box_text],
outputs=[save_message]
)
# Page 2----------------------------------------------------------------------
####|
with gr.Tab("SOAP and SBAR Queries"):
with gr.Tab("Query SOAP Reports"):
with gr.Row():
with gr.Column():
soap_refresh_button = gr.Button("Refresh")
ask_soap_input = gr.Dropdown(label="Choose File")
soap_content_display = gr.Textbox(
label="SOAP Report Content", interactive=False, placeholder="Report content will appear here...", lines=5
)
with gr.Column():
# Chatbot for Q&A
soap_chatbot = gr.Chatbot(label="SOAP Chatbot")
soap_chat_input = gr.Textbox(placeholder="Enter your question here...", submit_btn=True)
audio_file = gr.Audio(label="Audio Input", type="filepath",sources="microphone")
submit_audio_btn = gr.Button("Submit Audio")
clear = gr.ClearButton([soap_chat_input, soap_chatbot,audio_file])
# Refresh button for SOAP file dropdown
soap_refresh_button.click(fn=soap_refresh, inputs=None, outputs=ask_soap_input)
# Display selected SOAP report content
ask_soap_input.change(fn=get_soap_report_content, inputs=ask_soap_input, outputs=soap_content_display)
submit_audio_btn.click(openai_STT, inputs=audio_file, outputs=soap_chat_input)
# Handle chatbot input submission with streaming response
soap_chat_input.submit(
handle_chat_message,
inputs=[soap_chatbot, soap_chat_input, soap_content_display],
outputs=[soap_chatbot, soap_chat_input]
)
# Query SBAR Reports Tab
with gr.Tab("Query SBAR Reports"):
with gr.Row():
with gr.Column():
sbar_refresh_button = gr.Button("Refresh")
ask_sbar_input = gr.Dropdown(label="Choose File")
sbar_content_display = gr.Textbox(
label="SBAR Report Content", interactive=False, placeholder="Report content will appear here...", lines=5
)
with gr.Column():
# Chatbot for SBAR Q&A
sbar_chatbot = gr.Chatbot(label="SBAR Chatbot")
sbar_chat_input = gr.Textbox(placeholder="Enter your question here...",submit_btn=True)
audio_file = gr.Audio(label="Audio Input", type="filepath",sources="microphone")
submit_audio_btn = gr.Button("Submit Audio")
clear_sbar = gr.ClearButton([sbar_chat_input, sbar_chatbot,audio_file])
# Refresh button for SBAR file dropdown
sbar_refresh_button.click(fn=sbar_refresh, inputs=None, outputs=ask_sbar_input)
# Display selected SBAR report content
ask_sbar_input.change(fn=get_sbar_report_content, inputs=ask_sbar_input, outputs=sbar_content_display)
submit_audio_btn.click(openai_STT, inputs=audio_file, outputs=sbar_chat_input)
# Handle chatbot input submission with streaming response
sbar_chat_input.submit(
handle_chat_message,
inputs=[sbar_chatbot, sbar_chat_input, sbar_content_display], # Pass the SBAR content
outputs=[sbar_chatbot, sbar_chat_input]
)
# Page 3----------------------------------------------------------------------
####|Chatbot to query all SOAP and SBAR reports (RAG). Chatbot can ask OpenAI for answers directly
with gr.Tab("All Queries"):
with gr.Column(elem_classes="col"):
local_search_input = gr.Textbox(label="Enter Question here")
local_search_button = gr.Button("Search")
local_search_output = gr.Textbox(label="Output")
local_gpt_button = gr.Button("Ask ChatGPT")
local_gpt_output = gr.Textbox(label="Output")
local_search_button.click(local_search, inputs=local_search_input, outputs=local_search_output)
local_gpt_button.click(local_gpt, inputs=local_search_input, outputs=local_gpt_output)
# Page 4----------------------------------------------------------------------
####|
with gr.Tab("Documents Queries"):
with gr.Column(elem_classes="col"):
with gr.Tab("Upload and Process Documents"):
with gr.Column():
docs2_upload_input = gr.Files(label="Upload File(s)")
docs2_upload_button = gr.Button("Upload")
docs2_upload_output = gr.Textbox(label="Output")
docs2_process_button = gr.Button("Process")
docs2_process_output = gr.Textbox(label="Output")
create2_agent_button = gr.Button("Create Agent")
create2_agent_output = gr.Textbox(label="Output")
gr.ClearButton([docs2_upload_input, docs2_upload_output, docs2_process_output, create2_agent_output])
docs2_upload_button.click(save2_docs, inputs=docs2_upload_input, outputs=docs2_upload_output)
docs2_process_button.click(process2_docs, inputs=None, outputs=docs2_process_output)
create2_agent_button.click(create2_agent, inputs=None, outputs=create2_agent_output)
with gr.Tab("Query Documents"):
with gr.Column():
docs2_prompt_input = gr.Textbox(label="Custom Prompt")
docs2_chatbot = gr.Chatbot(label="Chats")
docs2_state = gr.State()
docs2_search_input = gr.Textbox(label="Enter Question")
docs2_search_button = gr.Button("Search")
docs2_delete_button = gr.Button("Delete")
docs2_delete_output = gr.Textbox(label="Output")
gr.ClearButton([docs2_prompt_input, docs2_search_input, docs2_delete_output])
docs2_search_button.click(search2_docs, inputs=[docs2_prompt_input, docs2_search_input, docs2_state], outputs=[docs2_chatbot, docs2_state])
docs2_delete_button.click(delete2_docs, inputs=None, outputs=docs2_delete_output)
demo.launch(debug=True)
|