|
from toolbox import CatchException, update_ui |
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping |
|
import requests |
|
from bs4 import BeautifulSoup |
|
from request_llm.bridge_all import model_info |
|
|
|
|
|
def bing_search(query, proxies=None): |
|
query = query |
|
url = f"https://cn.bing.com/search?q={query}" |
|
headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.36'} |
|
response = requests.get(url, headers=headers, proxies=proxies) |
|
soup = BeautifulSoup(response.content, 'html.parser') |
|
results = [] |
|
for g in soup.find_all('li', class_='b_algo'): |
|
anchors = g.find_all('a') |
|
if anchors: |
|
link = anchors[0]['href'] |
|
if not link.startswith('http'): |
|
continue |
|
title = g.find('h2').text |
|
item = {'title': title, 'link': link} |
|
results.append(item) |
|
|
|
for r in results: |
|
print(r['link']) |
|
return results |
|
|
|
|
|
def scrape_text(url, proxies) -> str: |
|
"""Scrape text from a webpage |
|
|
|
Args: |
|
url (str): The URL to scrape text from |
|
|
|
Returns: |
|
str: The scraped text |
|
""" |
|
headers = { |
|
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.36', |
|
'Content-Type': 'text/plain', |
|
} |
|
try: |
|
response = requests.get(url, headers=headers, proxies=proxies, timeout=8) |
|
if response.encoding == "ISO-8859-1": response.encoding = response.apparent_encoding |
|
except: |
|
return "无法连接到该网页" |
|
soup = BeautifulSoup(response.text, "html.parser") |
|
for script in soup(["script", "style"]): |
|
script.extract() |
|
text = soup.get_text() |
|
lines = (line.strip() for line in text.splitlines()) |
|
chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) |
|
text = "\n".join(chunk for chunk in chunks if chunk) |
|
return text |
|
|
|
@CatchException |
|
def 连接bing搜索回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port): |
|
""" |
|
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径 |
|
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行 |
|
plugin_kwargs 插件模型的参数,暂时没有用武之地 |
|
chatbot 聊天显示框的句柄,用于显示给用户 |
|
history 聊天历史,前情提要 |
|
system_prompt 给gpt的静默提醒 |
|
web_port 当前软件运行的端口号 |
|
""" |
|
history = [] |
|
chatbot.append((f"请结合互联网信息回答以下问题:{txt}", |
|
"[Local Message] 请注意,您正在调用一个[函数插件]的模板,该模板可以实现ChatGPT联网信息综合。该函数面向希望实现更多有趣功能的开发者,它可以作为创建新功能函数的模板。您若希望分享新的功能模组,请不吝PR!")) |
|
yield from update_ui(chatbot=chatbot, history=history) |
|
|
|
|
|
from toolbox import get_conf |
|
proxies, = get_conf('proxies') |
|
urls = bing_search(txt, proxies) |
|
history = [] |
|
|
|
|
|
max_search_result = 8 |
|
for index, url in enumerate(urls[:max_search_result]): |
|
res = scrape_text(url['link'], proxies) |
|
history.extend([f"第{index}份搜索结果:", res]) |
|
chatbot.append([f"第{index}份搜索结果:", res[:500]+"......"]) |
|
yield from update_ui(chatbot=chatbot, history=history) |
|
|
|
|
|
i_say = f"从以上搜索结果中抽取信息,然后回答问题:{txt}" |
|
i_say, history = input_clipping( |
|
inputs=i_say, |
|
history=history, |
|
max_token_limit=model_info[llm_kwargs['llm_model']]['max_token']*3//4 |
|
) |
|
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive( |
|
inputs=i_say, inputs_show_user=i_say, |
|
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history, |
|
sys_prompt="请从给定的若干条搜索结果中抽取信息,对最相关的两个搜索结果进行总结,然后回答问题。" |
|
) |
|
chatbot[-1] = (i_say, gpt_say) |
|
history.append(i_say);history.append(gpt_say) |
|
yield from update_ui(chatbot=chatbot, history=history) |
|
|
|
|