Spaces:
Runtime error
Runtime error
File size: 4,487 Bytes
89d1ee7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
"""
Code borrowed from https://gist.github.com/alper111/8233cdb0414b4cb5853f2f730ab95a49#file-vgg_perceptual_loss-py-L5
"""
import torch
import torchvision
from models.vggface import VGGFaceFeats
def cos_loss(fi, ft):
return 1 - torch.nn.functional.cosine_similarity(fi, ft).mean()
class VGGPerceptualLoss(torch.nn.Module):
def __init__(self, resize=False):
super(VGGPerceptualLoss, self).__init__()
blocks = []
blocks.append(torchvision.models.vgg16(pretrained=True).features[:4].eval())
blocks.append(torchvision.models.vgg16(pretrained=True).features[4:9].eval())
blocks.append(torchvision.models.vgg16(pretrained=True).features[9:16].eval())
blocks.append(torchvision.models.vgg16(pretrained=True).features[16:23].eval())
for bl in blocks:
for p in bl:
p.requires_grad = False
self.blocks = torch.nn.ModuleList(blocks)
self.transform = torch.nn.functional.interpolate
self.mean = torch.nn.Parameter(torch.tensor([0.485, 0.456, 0.406]).view(1,3,1,1))
self.std = torch.nn.Parameter(torch.tensor([0.229, 0.224, 0.225]).view(1,3,1,1))
self.resize = resize
def forward(self, input, target, max_layer=4, cos_dist: bool = False):
target = (target + 1) * 0.5
input = (input + 1) * 0.5
if input.shape[1] != 3:
input = input.repeat(1, 3, 1, 1)
target = target.repeat(1, 3, 1, 1)
input = (input-self.mean) / self.std
target = (target-self.mean) / self.std
if self.resize:
input = self.transform(input, mode='bilinear', size=(224, 224), align_corners=False)
target = self.transform(target, mode='bilinear', size=(224, 224), align_corners=False)
x = input
y = target
loss = 0.0
loss_func = cos_loss if cos_dist else torch.nn.functional.l1_loss
for bi, block in enumerate(self.blocks[:max_layer]):
x = block(x)
y = block(y)
loss += loss_func(x, y.detach())
return loss
class VGGFacePerceptualLoss(torch.nn.Module):
def __init__(self, weight_path: str = "checkpoint/vgg_face_dag.pt", resize: bool = False):
super().__init__()
self.vgg = VGGFaceFeats()
self.vgg.load_state_dict(torch.load(weight_path))
mean = torch.tensor(self.vgg.meta["mean"]).view(1, 3, 1, 1) / 255.0
self.register_buffer("mean", mean)
self.transform = torch.nn.functional.interpolate
self.resize = resize
def forward(self, input, target, max_layer: int = 4, cos_dist: bool = False):
target = (target + 1) * 0.5
input = (input + 1) * 0.5
# preprocessing
if input.shape[1] != 3:
input = input.repeat(1, 3, 1, 1)
target = target.repeat(1, 3, 1, 1)
input = input - self.mean
target = target - self.mean
if self.resize:
input = self.transform(input, mode='bilinear', size=(224, 224), align_corners=False)
target = self.transform(target, mode='bilinear', size=(224, 224), align_corners=False)
input_feats = self.vgg(input)
target_feats = self.vgg(target)
loss_func = cos_loss if cos_dist else torch.nn.functional.l1_loss
# calc perceptual loss
loss = 0.0
for fi, ft in zip(input_feats[:max_layer], target_feats[:max_layer]):
loss = loss + loss_func(fi, ft.detach())
return loss
class PerceptualLoss(torch.nn.Module):
def __init__(
self, lambda_vggface: float = 0.025 / 0.15, lambda_vgg: float = 1, eps: float = 1e-8, cos_dist: bool = False
):
super().__init__()
self.register_buffer("lambda_vggface", torch.tensor(lambda_vggface))
self.register_buffer("lambda_vgg", torch.tensor(lambda_vgg))
self.cos_dist = cos_dist
if lambda_vgg > eps:
self.vgg = VGGPerceptualLoss()
if lambda_vggface > eps:
self.vggface = VGGFacePerceptualLoss()
def forward(self, input, target, eps=1e-8, use_vggface: bool = True, use_vgg=True, max_vgg_layer=4):
loss = 0.0
if self.lambda_vgg > eps and use_vgg:
loss = loss + self.lambda_vgg * self.vgg(input, target, max_layer=max_vgg_layer)
if self.lambda_vggface > eps and use_vggface:
loss = loss + self.lambda_vggface * self.vggface(input, target, cos_dist=self.cos_dist)
return loss
|