File size: 5,453 Bytes
89d1ee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67683e8
 
 
89d1ee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67683e8
 
 
 
 
 
 
89d1ee7
67683e8
89d1ee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
from argparse import Namespace
import os
from os.path import join as pjoin
import random
import sys
from typing import (
    Iterable,
    Optional,
)

import cv2
import numpy as np
from PIL import Image
import torch
from torch.utils.tensorboard import SummaryWriter
from torchvision.transforms import (
    Compose,
    Grayscale,
    Resize,
    ToTensor,
    Normalize,
)

from losses.joint_loss import JointLoss
from model import Generator
from tools.initialize import Initializer
from tools.match_skin_histogram import match_skin_histogram
from utils.projector_arguments import ProjectorArguments
from utils import torch_helpers as th
from utils.torch_helpers import make_image
from utils.misc import stem
from utils.optimize import Optimizer
from models.degrade import (
    Degrade,
    Downsample,
)

from huggingface_hub import hf_hub_download
TOKEN = "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"


def set_random_seed(seed: int):
    # FIXME (xuanluo): this setup still allows randomness somehow
    torch.manual_seed(seed)
    random.seed(seed)
    np.random.seed(seed)


def read_images(paths: str, max_size: Optional[int] = None):
    transform = Compose(
        [
            Grayscale(),
            ToTensor(),
        ]
    )

    imgs = []
    for path in paths:
        img = Image.open(path)
        if max_size is not None and img.width > max_size:
            img = img.resize((max_size, max_size))
        img = transform(img)
        imgs.append(img)
    imgs = torch.stack(imgs, 0)
    return imgs


def normalize(img: torch.Tensor, mean=0.5, std=0.5):
    """[0, 1] -> [-1, 1]"""
    return (img - mean) / std


def create_generator(file_name: str, path:str,args: Namespace, device: torch.device):
    path = hf_hub_download(f'{path}',
                           f'{file_name}',
                           use_auth_token=TOKEN)
    with open(path, 'rb') as f:
        generator = Generator(args.generator_size, 512, 8)
        generator.load_state_dict(torch.load(f)['g_ema'], strict=False)
    generator.eval()
    generator.to(device)
    return generator


def save(
        path_prefixes: Iterable[str],
        imgs: torch.Tensor,  # BCHW
        latents: torch.Tensor,
        noises: torch.Tensor,
        imgs_rand: Optional[torch.Tensor] = None,
):
    assert len(path_prefixes) == len(imgs) and len(latents) == len(path_prefixes)
    if imgs_rand is not None:
        assert len(imgs) == len(imgs_rand)
    imgs_arr = make_image(imgs)
    for path_prefix, img, latent, noise in zip(path_prefixes, imgs_arr, latents, noises):
        os.makedirs(os.path.dirname(path_prefix), exist_ok=True)
        cv2.imwrite(path_prefix + ".png", img[...,::-1])
        torch.save({"latent": latent.detach().cpu(), "noise": noise.detach().cpu()},
                path_prefix + ".pt")

    if imgs_rand is not None:
        imgs_arr = make_image(imgs_rand)
        for path_prefix, img in zip(path_prefixes, imgs_arr):
            cv2.imwrite(path_prefix + "-rand.png", img[...,::-1])


def main(args):
    opt_str = ProjectorArguments.to_string(args)
    print(opt_str)

    if args.rand_seed is not None:
        set_random_seed(args.rand_seed)
    device = th.device()

    # read inputs. TODO imgs_orig has channel 1
    imgs_orig = read_images([args.input], max_size=args.generator_size).to(device)
    imgs = normalize(imgs_orig)  # actually this will be overwritten by the histogram matching result

    # initialize
    with torch.no_grad():
        init = Initializer(args).to(device)
        latent_init = init(imgs_orig)

    # create generator
    generator = create_generator(args, device)

    # init noises
    with torch.no_grad():
        noises_init = generator.make_noise()

    # create a new input by matching the input's histogram to the sibling image
    with torch.no_grad():
        sibling, _, sibling_rgbs = generator([latent_init], input_is_latent=True, noise=noises_init)
    mh_dir = pjoin(args.results_dir, stem(args.input))
    imgs = match_skin_histogram(
        imgs, sibling,
        args.spectral_sensitivity,
        pjoin(mh_dir, "input_sibling"),
        pjoin(mh_dir, "skin_mask"),
        matched_hist_fn=mh_dir.rstrip(os.sep) + f"_{args.spectral_sensitivity}.png",
        normalize=normalize,
    ).to(device)
    torch.cuda.empty_cache()
    # TODO imgs has channel 3

    degrade = Degrade(args).to(device)

    rgb_levels = generator.get_latent_size(args.coarse_min) // 2 + len(args.wplus_step) - 1
    criterion = JointLoss(
            args, imgs,
            sibling=sibling.detach(), sibling_rgbs=sibling_rgbs[:rgb_levels]).to(device)

    # save initialization
    save(
        [pjoin(args.results_dir, f"{stem(args.input)}-{opt_str}-init")],
        sibling, latent_init, noises_init,
    )

    writer = SummaryWriter(pjoin(args.log_dir, f"{stem(args.input)}/{opt_str}"))
    # start optimize
    latent, noises = Optimizer.optimize(generator, criterion, degrade, imgs, latent_init, noises_init, args, writer=writer)

    # generate output
    img_out, _, _ = generator([latent], input_is_latent=True, noise=noises)
    img_out_rand_noise, _, _ = generator([latent], input_is_latent=True)
    # save output
    save(
        [pjoin(args.results_dir, f"{stem(args.input)}-{opt_str}")],
        img_out, latent, noises,
        imgs_rand=img_out_rand_noise
    )


def parse_args():
    return ProjectorArguments().parse()

if __name__ == "__main__":
    sys.exit(main(parse_args()))