feng2022's picture
anothertry
89d1ee7
from argparse import Namespace, ArgumentParser
from functools import partial
from torch import nn
from .resnet import ResNetBasicBlock, activation_func, norm_module, Conv2dAuto
def add_arguments(parser: ArgumentParser) -> ArgumentParser:
parser.add_argument("--latent_size", type=int, default=512, help="latent size")
return parser
def create_model(args) -> nn.Module:
in_channels = 3 if "rgb" in args and args.rgb else 1
return Encoder(in_channels, args.encoder_size, latent_size=args.latent_size)
class Flatten(nn.Module):
def forward(self, input_):
return input_.view(input_.size(0), -1)
class Encoder(nn.Module):
def __init__(
self, in_channels: int, size: int, latent_size: int = 512,
activation: str = 'leaky_relu', norm: str = "instance"
):
super().__init__()
out_channels0 = 64
norm_m = norm_module(norm)
self.conv0 = nn.Sequential(
Conv2dAuto(in_channels, out_channels0, kernel_size=5),
norm_m(out_channels0),
activation_func(activation),
)
pool_kernel = 2
self.pool = nn.AvgPool2d(pool_kernel)
num_channels = [128, 256, 512, 512]
# FIXME: this is a hack
if size >= 256:
num_channels.append(512)
residual = partial(ResNetBasicBlock, activation=activation, norm=norm, bias=True)
residual_blocks = nn.ModuleList()
for in_channel, out_channel in zip([out_channels0] + num_channels[:-1], num_channels):
residual_blocks.append(residual(in_channel, out_channel))
residual_blocks.append(nn.AvgPool2d(pool_kernel))
self.residual_blocks = nn.Sequential(*residual_blocks)
self.last = nn.Sequential(
nn.ReLU(),
nn.AvgPool2d(4), # TODO: not sure whehter this would cause problem
Flatten(),
nn.Linear(num_channels[-1], latent_size, bias=True)
)
def forward(self, input_):
out = self.conv0(input_)
out = self.pool(out)
out = self.residual_blocks(out)
out = self.last(out)
return out