feng2022 commited on
Commit
40ce629
·
1 Parent(s): c92ff54
This view is limited to 50 files because it contains too many changes.   See raw diff
.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ftz filter=lfs diff=lfs merge=lfs -text
6
+ *.gz filter=lfs diff=lfs merge=lfs -text
7
+ *.h5 filter=lfs diff=lfs merge=lfs -text
8
+ *.joblib filter=lfs diff=lfs merge=lfs -text
9
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
10
+ *.model filter=lfs diff=lfs merge=lfs -text
11
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
12
+ *.onnx filter=lfs diff=lfs merge=lfs -text
13
+ *.ot filter=lfs diff=lfs merge=lfs -text
14
+ *.parquet filter=lfs diff=lfs merge=lfs -text
15
+ *.pb filter=lfs diff=lfs merge=lfs -text
16
+ *.pt filter=lfs diff=lfs merge=lfs -text
17
+ *.pth filter=lfs diff=lfs merge=lfs -text
18
+ *.rar filter=lfs diff=lfs merge=lfs -text
19
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
20
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
21
+ *.tflite filter=lfs diff=lfs merge=lfs -text
22
+ *.tgz filter=lfs diff=lfs merge=lfs -text
23
+ *.wasm filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
.gitignore CHANGED
@@ -131,11 +131,3 @@ dmypy.json
131
  wandb/
132
  *.lmdb/
133
  *.pkl
134
-
135
- # results
136
- results
137
- results_old
138
- log
139
- checkpoint
140
- *.pt
141
- *.old
 
131
  wandb/
132
  *.lmdb/
133
  *.pkl
 
 
 
 
 
 
 
 
.gitmodules CHANGED
@@ -1,9 +1,4 @@
1
- [submodule "third_party/face_parsing"]
2
- path = third_party/face_parsing
3
- url = https://github.com/Time-Travel-Rephotography/face-parsing.PyTorch.git
4
- [submodule "models/encoder4editing"]
5
- path = models/encoder4editing
6
- url = https://github.com/Time-Travel-Rephotography/encoder4editing.git
7
- [submodule "losses/contextual_loss"]
8
- path = losses/contextual_loss
9
- url = https://github.com/Time-Travel-Rephotography/contextual_loss_pytorch.git
 
1
+ [submodule "StyleGAN-Human"]
2
+ path = StyleGAN-Human
3
+ url = https://github.com/stylegan-human/StyleGAN-Human
4
+
 
 
 
 
 
LICENSE DELETED
@@ -1,21 +0,0 @@
1
- MIT License
2
-
3
- Copyright (c) 2020 Time-Travel-Rephotography
4
-
5
- Permission is hereby granted, free of charge, to any person obtaining a copy
6
- of this software and associated documentation files (the "Software"), to deal
7
- in the Software without restriction, including without limitation the rights
8
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
- copies of the Software, and to permit persons to whom the Software is
10
- furnished to do so, subject to the following conditions:
11
-
12
- The above copyright notice and this permission notice shall be included in all
13
- copies or substantial portions of the Software.
14
-
15
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
- SOFTWARE.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
LICENSE-NVIDIA DELETED
@@ -1,101 +0,0 @@
1
- Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
2
-
3
-
4
- Nvidia Source Code License-NC
5
-
6
- =======================================================================
7
-
8
- 1. Definitions
9
-
10
- "Licensor" means any person or entity that distributes its Work.
11
-
12
- "Software" means the original work of authorship made available under
13
- this License.
14
-
15
- "Work" means the Software and any additions to or derivative works of
16
- the Software that are made available under this License.
17
-
18
- "Nvidia Processors" means any central processing unit (CPU), graphics
19
- processing unit (GPU), field-programmable gate array (FPGA),
20
- application-specific integrated circuit (ASIC) or any combination
21
- thereof designed, made, sold, or provided by Nvidia or its affiliates.
22
-
23
- The terms "reproduce," "reproduction," "derivative works," and
24
- "distribution" have the meaning as provided under U.S. copyright law;
25
- provided, however, that for the purposes of this License, derivative
26
- works shall not include works that remain separable from, or merely
27
- link (or bind by name) to the interfaces of, the Work.
28
-
29
- Works, including the Software, are "made available" under this License
30
- by including in or with the Work either (a) a copyright notice
31
- referencing the applicability of this License to the Work, or (b) a
32
- copy of this License.
33
-
34
- 2. License Grants
35
-
36
- 2.1 Copyright Grant. Subject to the terms and conditions of this
37
- License, each Licensor grants to you a perpetual, worldwide,
38
- non-exclusive, royalty-free, copyright license to reproduce,
39
- prepare derivative works of, publicly display, publicly perform,
40
- sublicense and distribute its Work and any resulting derivative
41
- works in any form.
42
-
43
- 3. Limitations
44
-
45
- 3.1 Redistribution. You may reproduce or distribute the Work only
46
- if (a) you do so under this License, (b) you include a complete
47
- copy of this License with your distribution, and (c) you retain
48
- without modification any copyright, patent, trademark, or
49
- attribution notices that are present in the Work.
50
-
51
- 3.2 Derivative Works. You may specify that additional or different
52
- terms apply to the use, reproduction, and distribution of your
53
- derivative works of the Work ("Your Terms") only if (a) Your Terms
54
- provide that the use limitation in Section 3.3 applies to your
55
- derivative works, and (b) you identify the specific derivative
56
- works that are subject to Your Terms. Notwithstanding Your Terms,
57
- this License (including the redistribution requirements in Section
58
- 3.1) will continue to apply to the Work itself.
59
-
60
- 3.3 Use Limitation. The Work and any derivative works thereof only
61
- may be used or intended for use non-commercially. The Work or
62
- derivative works thereof may be used or intended for use by Nvidia
63
- or its affiliates commercially or non-commercially. As used herein,
64
- "non-commercially" means for research or evaluation purposes only.
65
-
66
- 3.4 Patent Claims. If you bring or threaten to bring a patent claim
67
- against any Licensor (including any claim, cross-claim or
68
- counterclaim in a lawsuit) to enforce any patents that you allege
69
- are infringed by any Work, then your rights under this License from
70
- such Licensor (including the grants in Sections 2.1 and 2.2) will
71
- terminate immediately.
72
-
73
- 3.5 Trademarks. This License does not grant any rights to use any
74
- Licensor's or its affiliates' names, logos, or trademarks, except
75
- as necessary to reproduce the notices described in this License.
76
-
77
- 3.6 Termination. If you violate any term of this License, then your
78
- rights under this License (including the grants in Sections 2.1 and
79
- 2.2) will terminate immediately.
80
-
81
- 4. Disclaimer of Warranty.
82
-
83
- THE WORK IS PROVIDED "AS IS" WITHOUT WARRANTIES OR CONDITIONS OF ANY
84
- KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OR CONDITIONS OF
85
- MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR
86
- NON-INFRINGEMENT. YOU BEAR THE RISK OF UNDERTAKING ANY ACTIVITIES UNDER
87
- THIS LICENSE.
88
-
89
- 5. Limitation of Liability.
90
-
91
- EXCEPT AS PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL
92
- THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE
93
- SHALL ANY LICENSOR BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY DIRECT,
94
- INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
95
- OR RELATED TO THIS LICENSE, THE USE OR INABILITY TO USE THE WORK
96
- (INCLUDING BUT NOT LIMITED TO LOSS OF GOODWILL, BUSINESS INTERRUPTION,
97
- LOST PROFITS OR DATA, COMPUTER FAILURE OR MALFUNCTION, OR ANY OTHER
98
- COMMERCIAL DAMAGES OR LOSSES), EVEN IF THE LICENSOR HAS BEEN ADVISED OF
99
- THE POSSIBILITY OF SUCH DAMAGES.
100
-
101
- =======================================================================
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
LICENSE-STYLEGAN2 DELETED
@@ -1,21 +0,0 @@
1
- MIT License
2
-
3
- Copyright (c) 2019 Kim Seonghyeon
4
-
5
- Permission is hereby granted, free of charge, to any person obtaining a copy
6
- of this software and associated documentation files (the "Software"), to deal
7
- in the Software without restriction, including without limitation the rights
8
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
- copies of the Software, and to permit persons to whom the Software is
10
- furnished to do so, subject to the following conditions:
11
-
12
- The above copyright notice and this permission notice shall be included in all
13
- copies or substantial portions of the Software.
14
-
15
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
- SOFTWARE.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -1,119 +1,13 @@
1
- # [SIGGRAPH Asia 2021] Time-Travel Rephotography
2
- <a href="https://arxiv.org/abs/2012.12261"><img src="https://img.shields.io/badge/arXiv-2008.00951-b31b1b.svg"></a>
3
- <a href="https://opensource.org/licenses/MIT"><img src="https://img.shields.io/badge/License-MIT-yellow.svg"></a>
4
- [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/15D2WIF_vE2l48ddxEx45cM3RykZwQXM8?usp=sharing)
5
- ### [[Project Website](https://time-travel-rephotography.github.io/)]
6
-
7
- <p align='center'>
8
- <img src="time-travel-rephotography.gif" width='100%'/>
9
- </p>
10
-
11
- Many historical people were only ever captured by old, faded, black and white photos, that are distorted due to the limitations of early cameras and the passage of time. This paper simulates traveling back in time with a modern camera to rephotograph famous subjects. Unlike conventional image restoration filters which apply independent operations like denoising, colorization, and superresolution, we leverage the StyleGAN2 framework to project old photos into the space of modern high-resolution photos, achieving all of these effects in a unified framework. A unique challenge with this approach is retaining the identity and pose of the subject in the original photo, while discarding the many artifacts frequently seen in low-quality antique photos. Our comparisons to current state-of-the-art restoration filters show significant improvements and compelling results for a variety of important historical people.
12
- <br/>
13
-
14
- **Time-Travel Rephotography**
15
- <br/>
16
- [Xuan Luo](https://roxanneluo.github.io),
17
- [Xuaner Zhang](https://people.eecs.berkeley.edu/~cecilia77/),
18
- [Paul Yoo](https://www.linkedin.com/in/paul-yoo-768a3715b),
19
- [Ricardo Martin-Brualla](http://www.ricardomartinbrualla.com/),
20
- [Jason Lawrence](http://jasonlawrence.info/), and
21
- [Steven M. Seitz](https://homes.cs.washington.edu/~seitz/)
22
- <br/>
23
- In SIGGRAPH Asia 2021.
24
-
25
- ## Demo
26
- We provide an easy-to-get-started demo using Google Colab!
27
- The Colab will allow you to try our method on the sample Abraham Lincoln photo or **your own photos** using Cloud GPUs on Google Colab.
28
-
29
- [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/15D2WIF_vE2l48ddxEx45cM3RykZwQXM8?usp=sharing)
30
-
31
- Or you can run our method on your own machine following the instructions below.
32
-
33
- ## Prerequisite
34
- - Pull third-party packages.
35
- ```
36
- git submodule update --init --recursive
37
- ```
38
- - Install python packages.
39
- ```
40
- conda create --name rephotography python=3.8.5
41
- conda activate rephotography
42
- conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1 -c pytorch
43
- pip install -r requirements.txt
44
- ```
45
-
46
- ## Quick Start
47
- Run our method on the example photo of Abraham Lincoln.
48
- - Download models:
49
- ```
50
- ./scripts/download_checkpoints.sh
51
- ```
52
- - Run:
53
- ```
54
- ./scripts/run.sh b "dataset/Abraham Lincoln_01.png" 0.75
55
- ```
56
- - You can inspect the optimization process by
57
- ```
58
- tensorboard --logdir "log/Abraham Lincoln_01"
59
- ```
60
- - You can find your results as below.
61
- ```
62
- results/
63
- Abraham Lincoln_01/ # intermediate outputs for histogram matching and face parsing
64
- Abraham Lincoln_01_b.png # the input after matching the histogram of the sibling image
65
- Abraham Lincoln_01-b-G0.75-init(10,18)-s256-vgg1-vggface0.3-eye0.1-color1.0e+10-cx0.1(relu3_4,relu2_2,relu1_2)-NR5.0e+04-lr0.1_0.01-c32-wp(250,750)-init.png # the sibling image
66
- Abraham Lincoln_01-b-G0.75-init(10,18)-s256-vgg1-vggface0.3-eye0.1-color1.0e+10-cx0.1(relu3_4,relu2_2,relu1_2)-NR5.0e+04-lr0.1_0.01-c32-wp(250,750)-init.pt # the sibing latent codes and initialized noise maps
67
- Abraham Lincoln_01-b-G0.75-init(10,18)-s256-vgg1-vggface0.3-eye0.1-color1.0e+10-cx0.1(relu3_4,relu2_2,relu1_2)-NR5.0e+04-lr0.1_0.01-c32-wp(250,750).png # the output result
68
- Abraham Lincoln_01-b-G0.75-init(10,18)-s256-vgg1-vggface0.3-eye0.1-color1.0e+10-cx0.1(relu3_4,relu2_2,relu1_2)-NR5.0e+04-lr0.1_0.01-c32-wp(250,750).pt # the final optimized latent codes and noise maps
69
- Abraham Lincoln_01-b-G0.75-init(10,18)-s256-vgg1-vggface0.3-eye0.1-color1.0e+10-cx0.1(relu3_4,relu2_2,relu1_2)-NR5.0e+04-lr0.1_0.01-c32-wp(250,750)-rand.png # the result with the final latent codes but random noise maps
70
-
71
- ```
72
-
73
- ## Run on Your Own Image
74
- - Crop and align the head regions of your images:
75
- ```
76
- python -m tools.data.align_images <input_raw_image_dir> <aligned_image_dir>
77
- ```
78
- - Run:
79
- ```
80
- ./scripts/run.sh <spectral_sensitivity> <input_image_path> <blur_radius>
81
- ```
82
- The `spectral_sensitivity` can be `b` (blue-sensitive), `gb` (orthochromatic), or `g` (panchromatic). You can roughly estimate the `spectral_sensitivity` of your photo as follows. Use the *blue-sensitive* model for photos before 1873, manually select between blue-sensitive and *orthochromatic* for images from 1873 to 1906 and among all models for photos taken afterwards.
83
-
84
- The `blur_radius` is the estimated gaussian blur radius in pixels if the input photot is resized to 1024x1024.
85
-
86
- ## Historical Wiki Face Dataset
87
- | Path | Size | Description |
88
- |----------- | ----------- | ----------- |
89
- | [Historical Wiki Face Dataset.zip](https://drive.google.com/open?id=1mgC2U7quhKSz_lTL97M-0cPrIILTiUCE&authuser=xuanluo%40cs.washington.edu&usp=drive_fs)| 148 MB | Images|
90
- | [spectral_sensitivity.json](https://drive.google.com/open?id=1n3Bqd8G0g-wNpshlgoZiOMXxLlOycAXr&authuser=xuanluo%40cs.washington.edu&usp=drive_fs)| 6 KB | Spectral sensitivity (`b`, `gb`, or `g`). |
91
- | [blur_radius.json](https://drive.google.com/open?id=1n4vUsbQo2BcxtKVMGfD1wFHaINzEmAVP&authuser=xuanluo%40cs.washington.edu&usp=drive_fs)| 6 KB | Blur radius in pixels|
92
-
93
- The `json`s are dictionares that map input names to the corresponding spectral sensitivity or blur radius.
94
- Due to copyright constraints, `Historical Wiki Face Dataset.zip` contains all images in the *Historical Wiki Face Dataset* that were used in our user study except the photo of [Mao Zedong](https://en.wikipedia.org/wiki/File:Mao_Zedong_in_1959_%28cropped%29.jpg). You can download it separately and crop it as [above](#run-on-your-own-image).
95
-
96
- ## Citation
97
- If you find our code useful, please consider citing our paper:
98
- ```
99
- @article{Luo-Rephotography-2021,
100
- author = {Luo, Xuan and Zhang, Xuaner and Yoo, Paul and Martin-Brualla, Ricardo and Lawrence, Jason and Seitz, Steven M.},
101
- title = {Time-Travel Rephotography},
102
- journal = {ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH Asia 2021)},
103
- publisher = {ACM New York, NY, USA},
104
- volume = {40},
105
- number = {6},
106
- articleno = {213},
107
- doi = {https://doi.org/10.1145/3478513.3480485},
108
- year = {2021},
109
- month = {12}
110
- }
111
- ```
112
-
113
- ## License
114
- This work is licensed under MIT License. See [LICENSE](LICENSE) for details.
115
-
116
- Codes for the StyleGAN2 model come from [https://github.com/rosinality/stylegan2-pytorch](https://github.com/rosinality/stylegan2-pytorch).
117
-
118
- ## Acknowledgments
119
- We thank [Nick Brandreth](https://www.nickbrandreth.com/) for capturing the dry plate photos. We thank Bo Zhang, Qingnan Fan, Roy Or-El, Aleksander Holynski and Keunhong Park for insightful advice.
 
1
+ ---
2
+ title: Time TravelRephotography
3
+ emoji: 🦀
4
+ colorFrom: yellow
5
+ colorTo: red
6
+ sdk: gradio
7
+ sdk_version: 2.9.4
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app.py CHANGED
@@ -1,172 +1,109 @@
1
- from argparse import Namespace
 
 
 
 
 
2
  import os
3
- from os.path import join as pjoin
4
- import random
5
  import sys
6
- from typing import (
7
- Iterable,
8
- Optional,
9
- )
10
 
11
- import cv2
12
  import numpy as np
13
- from PIL import Image
14
  import torch
15
- from torch.utils.tensorboard import SummaryWriter
16
- from torchvision.transforms import (
17
- Compose,
18
- Grayscale,
19
- Resize,
20
- ToTensor,
21
- Normalize,
22
- )
23
-
24
- from losses.joint_loss import JointLoss
25
- from model import Generator
26
- from tools.initialize import Initializer
27
- from tools.match_skin_histogram import match_skin_histogram
28
- from utils.projector_arguments import ProjectorArguments
29
- from utils import torch_helpers as th
30
- from utils.torch_helpers import make_image
31
- from utils.misc import stem
32
- from utils.optimize import Optimizer
33
- from models.degrade import (
34
- Degrade,
35
- Downsample,
36
- )
37
-
38
-
39
- def set_random_seed(seed: int):
40
- # FIXME (xuanluo): this setup still allows randomness somehow
41
- torch.manual_seed(seed)
42
- random.seed(seed)
43
- np.random.seed(seed)
44
-
45
-
46
- def read_images(paths: str, max_size: Optional[int] = None):
47
- transform = Compose(
48
- [
49
- Grayscale(),
50
- ToTensor(),
51
- ]
52
- )
53
 
54
- imgs = []
55
- for path in paths:
56
- img = Image.open(path)
57
- if max_size is not None and img.width > max_size:
58
- img = img.resize((max_size, max_size))
59
- img = transform(img)
60
- imgs.append(img)
61
- imgs = torch.stack(imgs, 0)
62
- return imgs
63
-
64
-
65
- def normalize(img: torch.Tensor, mean=0.5, std=0.5):
66
- """[0, 1] -> [-1, 1]"""
67
- return (img - mean) / std
68
-
69
-
70
- def create_generator(args: Namespace, device: torch.device):
71
- generator = Generator(args.generator_size, 512, 8)
72
- generator.load_state_dict(torch.load(args.ckpt)['g_ema'], strict=False)
73
- generator.eval()
74
- generator = generator.to(device)
75
- return generator
76
-
77
-
78
- def save(
79
- path_prefixes: Iterable[str],
80
- imgs: torch.Tensor, # BCHW
81
- latents: torch.Tensor,
82
- noises: torch.Tensor,
83
- imgs_rand: Optional[torch.Tensor] = None,
84
- ):
85
- assert len(path_prefixes) == len(imgs) and len(latents) == len(path_prefixes)
86
- if imgs_rand is not None:
87
- assert len(imgs) == len(imgs_rand)
88
- imgs_arr = make_image(imgs)
89
- for path_prefix, img, latent, noise in zip(path_prefixes, imgs_arr, latents, noises):
90
- os.makedirs(os.path.dirname(path_prefix), exist_ok=True)
91
- cv2.imwrite(path_prefix + ".png", img[...,::-1])
92
- torch.save({"latent": latent.detach().cpu(), "noise": noise.detach().cpu()},
93
- path_prefix + ".pt")
94
-
95
- if imgs_rand is not None:
96
- imgs_arr = make_image(imgs_rand)
97
- for path_prefix, img in zip(path_prefixes, imgs_arr):
98
- cv2.imwrite(path_prefix + "-rand.png", img[...,::-1])
99
-
100
-
101
- def main(args):
102
- opt_str = ProjectorArguments.to_string(args)
103
- print(opt_str)
104
-
105
- if args.rand_seed is not None:
106
- set_random_seed(args.rand_seed)
107
- device = th.device()
108
-
109
- # read inputs. TODO imgs_orig has channel 1
110
- imgs_orig = read_images([args.input], max_size=args.generator_size).to(device)
111
- imgs = normalize(imgs_orig) # actually this will be overwritten by the histogram matching result
112
-
113
- # initialize
114
- with torch.no_grad():
115
- init = Initializer(args).to(device)
116
- latent_init = init(imgs_orig)
117
-
118
- # create generator
119
- generator = create_generator(args, device)
120
-
121
- # init noises
122
- with torch.no_grad():
123
- noises_init = generator.make_noise()
124
-
125
- # create a new input by matching the input's histogram to the sibling image
126
- with torch.no_grad():
127
- sibling, _, sibling_rgbs = generator([latent_init], input_is_latent=True, noise=noises_init)
128
- mh_dir = pjoin(args.results_dir, stem(args.input))
129
- imgs = match_skin_histogram(
130
- imgs, sibling,
131
- args.spectral_sensitivity,
132
- pjoin(mh_dir, "input_sibling"),
133
- pjoin(mh_dir, "skin_mask"),
134
- matched_hist_fn=mh_dir.rstrip(os.sep) + f"_{args.spectral_sensitivity}.png",
135
- normalize=normalize,
136
- ).to(device)
137
- torch.cuda.empty_cache()
138
- # TODO imgs has channel 3
139
-
140
- degrade = Degrade(args).to(device)
141
-
142
- rgb_levels = generator.get_latent_size(args.coarse_min) // 2 + len(args.wplus_step) - 1
143
- criterion = JointLoss(
144
- args, imgs,
145
- sibling=sibling.detach(), sibling_rgbs=sibling_rgbs[:rgb_levels]).to(device)
146
-
147
- # save initialization
148
- save(
149
- [pjoin(args.results_dir, f"{stem(args.input)}-{opt_str}-init")],
150
- sibling, latent_init, noises_init,
151
- )
152
 
153
- writer = SummaryWriter(pjoin(args.log_dir, f"{stem(args.input)}/{opt_str}"))
154
- # start optimize
155
- latent, noises = Optimizer.optimize(generator, criterion, degrade, imgs, latent_init, noises_init, args, writer=writer)
156
-
157
- # generate output
158
- img_out, _, _ = generator([latent], input_is_latent=True, noise=noises)
159
- img_out_rand_noise, _, _ = generator([latent], input_is_latent=True)
160
- # save output
161
- save(
162
- [pjoin(args.results_dir, f"{stem(args.input)}-{opt_str}")],
163
- img_out, latent, noises,
164
- imgs_rand=img_out_rand_noise
165
- )
166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167
 
168
- def parse_args():
169
- return ProjectorArguments().parse()
170
 
171
- if __name__ == "__main__":
172
- sys.exit(main(parse_args()))
 
 
1
+ #!/usr/bin/env python
2
+
3
+ from __future__ import annotations
4
+
5
+ import argparse
6
+ import functools
7
  import os
8
+ import pickle
 
9
  import sys
 
 
 
 
10
 
11
+ import gradio as gr
12
  import numpy as np
 
13
  import torch
14
+ import torch_utils
15
+ import torch.nn as nn
16
+ from huggingface_hub import hf_hub_download
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
+ sys.path.insert(0, 'StyleGAN-Human')
19
+
20
+ TITLE = 'StyleGAN-Human'
21
+ DESCRIPTION = '''This is an unofficial demo for https://github.com/stylegan-human/StyleGAN-Human.
22
+ Expected execution time on Hugging Face Spaces: 0.8s
23
+ Related App: [StyleGAN-Human (Interpolation)](https://huggingface.co/spaces/hysts/StyleGAN-Human-Interpolation)
24
+ '''
25
+ ARTICLE = '<center><img src="https://visitor-badge.glitch.me/badge?page_id=hysts.stylegan-human" alt="visitor badge"/></center>'
26
+
27
+ TOKEN = "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"
28
+
29
+
30
+ def parse_args() -> argparse.Namespace:
31
+ parser = argparse.ArgumentParser()
32
+ parser.add_argument('--device', type=str, default='cpu')
33
+ parser.add_argument('--theme', type=str)
34
+ parser.add_argument('--live', action='store_true')
35
+ parser.add_argument('--share', action='store_true')
36
+ parser.add_argument('--port', type=int)
37
+ parser.add_argument('--disable-queue',
38
+ dest='enable_queue',
39
+ action='store_false')
40
+ parser.add_argument('--allow-flagging', type=str, default='never')
41
+ return parser.parse_args()
42
+
43
+
44
+ def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor:
45
+ return torch.from_numpy(np.random.RandomState(seed).randn(
46
+ 1, z_dim)).to(device).float()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
49
+ @torch.inference_mode()
50
+ def generate_image(seed: int, truncation_psi: float, model: nn.Module,
51
+ device: torch.device) -> np.ndarray:
52
+ seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
53
+
54
+ z = generate_z(model.z_dim, seed, device)
55
+ label = torch.zeros([1, model.c_dim], device=device)
56
+
57
+ out = model(z, label, truncation_psi=truncation_psi, force_fp32=True)
58
+ out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
59
+ return out[0].cpu().numpy()
60
+
61
+
62
+ def load_model(file_name: str, device: torch.device) -> nn.Module:
63
+ path = hf_hub_download('feng2022/Time-TravelRephotography',
64
+ f'{file_name}',
65
+ use_auth_token=TOKEN)
66
+ with open(path, 'rb') as f:
67
+ model = pickle.load(f)['G_ema']
68
+ model.eval()
69
+ model.to(device)
70
+ with torch.inference_mode():
71
+ z = torch.zeros((1, model.z_dim)).to(device)
72
+ label = torch.zeros([1, model.c_dim], device=device)
73
+ model(z, label, force_fp32=True)
74
+ return model
75
+
76
+
77
+ def main():
78
+ args = parse_args()
79
+ device = torch.device(args.device)
80
+
81
+ model = load_model('stylegan_human_v2_1024.pkl', device)
82
+
83
+ func = functools.partial(generate_image, model=model, device=device)
84
+ func = functools.update_wrapper(func, generate_image)
85
+
86
+ gr.Interface(
87
+ func,
88
+ [
89
+ gr.inputs.Number(default=0, label='Seed'),
90
+ gr.inputs.Slider(
91
+ 0, 2, step=0.05, default=0.7, label='Truncation psi'),
92
+ ],
93
+ gr.outputs.Image(type='numpy', label='Output'),
94
+ title=TITLE,
95
+ description=DESCRIPTION,
96
+ article=ARTICLE,
97
+ theme=args.theme,
98
+ allow_flagging=args.allow_flagging,
99
+ live=args.live,
100
+ ).launch(
101
+ enable_queue=args.enable_queue,
102
+ server_port=args.port,
103
+ share=args.share,
104
+ )
105
 
 
 
106
 
107
+ if __name__ == '__main__':
108
+ main()
109
+
dnnlib/__init__.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) SenseTime Research. All rights reserved.
2
+
3
+ # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
6
+ # and proprietary rights in and to this software, related documentation
7
+ # and any modifications thereto. Any use, reproduction, disclosure or
8
+ # distribution of this software and related documentation without an express
9
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
10
+
11
+ from .util import EasyDict, make_cache_dir_path
dnnlib/tflib/__init__.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) SenseTime Research. All rights reserved.
2
+
3
+ # Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
4
+ #
5
+ # This work is made available under the Nvidia Source Code License-NC.
6
+ # To view a copy of this license, visit
7
+ # https://nvlabs.github.io/stylegan2/license.html
8
+
9
+ from . import autosummary
10
+ from . import network
11
+ from . import optimizer
12
+ from . import tfutil
13
+ from . import custom_ops
14
+
15
+ from .tfutil import *
16
+ from .network import Network
17
+
18
+ from .optimizer import Optimizer
19
+
20
+ from .custom_ops import get_plugin
dnnlib/tflib/autosummary.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) SenseTime Research. All rights reserved.
2
+
3
+ # Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
4
+ #
5
+ # This work is made available under the Nvidia Source Code License-NC.
6
+ # To view a copy of this license, visit
7
+ # https://nvlabs.github.io/stylegan2/license.html
8
+
9
+ """Helper for adding automatically tracked values to Tensorboard.
10
+
11
+ Autosummary creates an identity op that internally keeps track of the input
12
+ values and automatically shows up in TensorBoard. The reported value
13
+ represents an average over input components. The average is accumulated
14
+ constantly over time and flushed when save_summaries() is called.
15
+
16
+ Notes:
17
+ - The output tensor must be used as an input for something else in the
18
+ graph. Otherwise, the autosummary op will not get executed, and the average
19
+ value will not get accumulated.
20
+ - It is perfectly fine to include autosummaries with the same name in
21
+ several places throughout the graph, even if they are executed concurrently.
22
+ - It is ok to also pass in a python scalar or numpy array. In this case, it
23
+ is added to the average immediately.
24
+ """
25
+
26
+ from collections import OrderedDict
27
+ import numpy as np
28
+ import tensorflow as tf
29
+ from tensorboard import summary as summary_lib
30
+ from tensorboard.plugins.custom_scalar import layout_pb2
31
+
32
+ from . import tfutil
33
+ from .tfutil import TfExpression
34
+ from .tfutil import TfExpressionEx
35
+
36
+ # Enable "Custom scalars" tab in TensorBoard for advanced formatting.
37
+ # Disabled by default to reduce tfevents file size.
38
+ enable_custom_scalars = False
39
+
40
+ _dtype = tf.float64
41
+ _vars = OrderedDict() # name => [var, ...]
42
+ _immediate = OrderedDict() # name => update_op, update_value
43
+ _finalized = False
44
+ _merge_op = None
45
+
46
+
47
+ def _create_var(name: str, value_expr: TfExpression) -> TfExpression:
48
+ """Internal helper for creating autosummary accumulators."""
49
+ assert not _finalized
50
+ name_id = name.replace("/", "_")
51
+ v = tf.cast(value_expr, _dtype)
52
+
53
+ if v.shape.is_fully_defined():
54
+ size = np.prod(v.shape.as_list())
55
+ size_expr = tf.constant(size, dtype=_dtype)
56
+ else:
57
+ size = None
58
+ size_expr = tf.reduce_prod(tf.cast(tf.shape(v), _dtype))
59
+
60
+ if size == 1:
61
+ if v.shape.ndims != 0:
62
+ v = tf.reshape(v, [])
63
+ v = [size_expr, v, tf.square(v)]
64
+ else:
65
+ v = [size_expr, tf.reduce_sum(v), tf.reduce_sum(tf.square(v))]
66
+ v = tf.cond(tf.is_finite(v[1]), lambda: tf.stack(v), lambda: tf.zeros(3, dtype=_dtype))
67
+
68
+ with tfutil.absolute_name_scope("Autosummary/" + name_id), tf.control_dependencies(None):
69
+ var = tf.Variable(tf.zeros(3, dtype=_dtype), trainable=False) # [sum(1), sum(x), sum(x**2)]
70
+ update_op = tf.cond(tf.is_variable_initialized(var), lambda: tf.assign_add(var, v), lambda: tf.assign(var, v))
71
+
72
+ if name in _vars:
73
+ _vars[name].append(var)
74
+ else:
75
+ _vars[name] = [var]
76
+ return update_op
77
+
78
+
79
+ def autosummary(name: str, value: TfExpressionEx, passthru: TfExpressionEx = None, condition: TfExpressionEx = True) -> TfExpressionEx:
80
+ """Create a new autosummary.
81
+
82
+ Args:
83
+ name: Name to use in TensorBoard
84
+ value: TensorFlow expression or python value to track
85
+ passthru: Optionally return this TF node without modifications but tack an autosummary update side-effect to this node.
86
+
87
+ Example use of the passthru mechanism:
88
+
89
+ n = autosummary('l2loss', loss, passthru=n)
90
+
91
+ This is a shorthand for the following code:
92
+
93
+ with tf.control_dependencies([autosummary('l2loss', loss)]):
94
+ n = tf.identity(n)
95
+ """
96
+ tfutil.assert_tf_initialized()
97
+ name_id = name.replace("/", "_")
98
+
99
+ if tfutil.is_tf_expression(value):
100
+ with tf.name_scope("summary_" + name_id), tf.device(value.device):
101
+ condition = tf.convert_to_tensor(condition, name='condition')
102
+ update_op = tf.cond(condition, lambda: tf.group(_create_var(name, value)), tf.no_op)
103
+ with tf.control_dependencies([update_op]):
104
+ return tf.identity(value if passthru is None else passthru)
105
+
106
+ else: # python scalar or numpy array
107
+ assert not tfutil.is_tf_expression(passthru)
108
+ assert not tfutil.is_tf_expression(condition)
109
+ if condition:
110
+ if name not in _immediate:
111
+ with tfutil.absolute_name_scope("Autosummary/" + name_id), tf.device(None), tf.control_dependencies(None):
112
+ update_value = tf.placeholder(_dtype)
113
+ update_op = _create_var(name, update_value)
114
+ _immediate[name] = update_op, update_value
115
+ update_op, update_value = _immediate[name]
116
+ tfutil.run(update_op, {update_value: value})
117
+ return value if passthru is None else passthru
118
+
119
+
120
+ def finalize_autosummaries() -> None:
121
+ """Create the necessary ops to include autosummaries in TensorBoard report.
122
+ Note: This should be done only once per graph.
123
+ """
124
+ global _finalized
125
+ tfutil.assert_tf_initialized()
126
+
127
+ if _finalized:
128
+ return None
129
+
130
+ _finalized = True
131
+ tfutil.init_uninitialized_vars([var for vars_list in _vars.values() for var in vars_list])
132
+
133
+ # Create summary ops.
134
+ with tf.device(None), tf.control_dependencies(None):
135
+ for name, vars_list in _vars.items():
136
+ name_id = name.replace("/", "_")
137
+ with tfutil.absolute_name_scope("Autosummary/" + name_id):
138
+ moments = tf.add_n(vars_list)
139
+ moments /= moments[0]
140
+ with tf.control_dependencies([moments]): # read before resetting
141
+ reset_ops = [tf.assign(var, tf.zeros(3, dtype=_dtype)) for var in vars_list]
142
+ with tf.name_scope(None), tf.control_dependencies(reset_ops): # reset before reporting
143
+ mean = moments[1]
144
+ std = tf.sqrt(moments[2] - tf.square(moments[1]))
145
+ tf.summary.scalar(name, mean)
146
+ if enable_custom_scalars:
147
+ tf.summary.scalar("xCustomScalars/" + name + "/margin_lo", mean - std)
148
+ tf.summary.scalar("xCustomScalars/" + name + "/margin_hi", mean + std)
149
+
150
+ # Setup layout for custom scalars.
151
+ layout = None
152
+ if enable_custom_scalars:
153
+ cat_dict = OrderedDict()
154
+ for series_name in sorted(_vars.keys()):
155
+ p = series_name.split("/")
156
+ cat = p[0] if len(p) >= 2 else ""
157
+ chart = "/".join(p[1:-1]) if len(p) >= 3 else p[-1]
158
+ if cat not in cat_dict:
159
+ cat_dict[cat] = OrderedDict()
160
+ if chart not in cat_dict[cat]:
161
+ cat_dict[cat][chart] = []
162
+ cat_dict[cat][chart].append(series_name)
163
+ categories = []
164
+ for cat_name, chart_dict in cat_dict.items():
165
+ charts = []
166
+ for chart_name, series_names in chart_dict.items():
167
+ series = []
168
+ for series_name in series_names:
169
+ series.append(layout_pb2.MarginChartContent.Series(
170
+ value=series_name,
171
+ lower="xCustomScalars/" + series_name + "/margin_lo",
172
+ upper="xCustomScalars/" + series_name + "/margin_hi"))
173
+ margin = layout_pb2.MarginChartContent(series=series)
174
+ charts.append(layout_pb2.Chart(title=chart_name, margin=margin))
175
+ categories.append(layout_pb2.Category(title=cat_name, chart=charts))
176
+ layout = summary_lib.custom_scalar_pb(layout_pb2.Layout(category=categories))
177
+ return layout
178
+
179
+ def save_summaries(file_writer, global_step=None):
180
+ """Call FileWriter.add_summary() with all summaries in the default graph,
181
+ automatically finalizing and merging them on the first call.
182
+ """
183
+ global _merge_op
184
+ tfutil.assert_tf_initialized()
185
+
186
+ if _merge_op is None:
187
+ layout = finalize_autosummaries()
188
+ if layout is not None:
189
+ file_writer.add_summary(layout)
190
+ with tf.device(None), tf.control_dependencies(None):
191
+ _merge_op = tf.summary.merge_all()
192
+
193
+ file_writer.add_summary(_merge_op.eval(), global_step)
dnnlib/tflib/custom_ops.py ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) SenseTime Research. All rights reserved.
2
+
3
+ # Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
4
+ #
5
+ # This work is made available under the Nvidia Source Code License-NC.
6
+ # To view a copy of this license, visit
7
+ # https://nvlabs.github.io/stylegan2/license.html
8
+
9
+ """TensorFlow custom ops builder.
10
+ """
11
+
12
+ import os
13
+ import re
14
+ import uuid
15
+ import hashlib
16
+ import tempfile
17
+ import shutil
18
+ import tensorflow as tf
19
+ from tensorflow.python.client import device_lib # pylint: disable=no-name-in-module
20
+
21
+ #----------------------------------------------------------------------------
22
+ # Global options.
23
+
24
+ cuda_cache_path = os.path.join(os.path.dirname(__file__), '_cudacache')
25
+ cuda_cache_version_tag = 'v1'
26
+ do_not_hash_included_headers = False # Speed up compilation by assuming that headers included by the CUDA code never change. Unsafe!
27
+ verbose = True # Print status messages to stdout.
28
+
29
+ compiler_bindir_search_path = [
30
+ 'C:/Program Files (x86)/Microsoft Visual Studio/2017/Community/VC/Tools/MSVC/14.14.26428/bin/Hostx64/x64',
31
+ 'C:/Program Files (x86)/Microsoft Visual Studio/2019/Community/VC/Tools/MSVC/14.23.28105/bin/Hostx64/x64',
32
+ 'C:/Program Files (x86)/Microsoft Visual Studio 14.0/vc/bin',
33
+ ]
34
+
35
+ #----------------------------------------------------------------------------
36
+ # Internal helper funcs.
37
+
38
+ def _find_compiler_bindir():
39
+ for compiler_path in compiler_bindir_search_path:
40
+ if os.path.isdir(compiler_path):
41
+ return compiler_path
42
+ return None
43
+
44
+ def _get_compute_cap(device):
45
+ caps_str = device.physical_device_desc
46
+ m = re.search('compute capability: (\\d+).(\\d+)', caps_str)
47
+ major = m.group(1)
48
+ minor = m.group(2)
49
+ return (major, minor)
50
+
51
+ def _get_cuda_gpu_arch_string():
52
+ gpus = [x for x in device_lib.list_local_devices() if x.device_type == 'GPU']
53
+ if len(gpus) == 0:
54
+ raise RuntimeError('No GPU devices found')
55
+ (major, minor) = _get_compute_cap(gpus[0])
56
+ return 'sm_%s%s' % (major, minor)
57
+
58
+ def _run_cmd(cmd):
59
+ with os.popen(cmd) as pipe:
60
+ output = pipe.read()
61
+ status = pipe.close()
62
+ if status is not None:
63
+ raise RuntimeError('NVCC returned an error. See below for full command line and output log:\n\n%s\n\n%s' % (cmd, output))
64
+
65
+ def _prepare_nvcc_cli(opts):
66
+ cmd = 'nvcc ' + opts.strip()
67
+ cmd += ' --disable-warnings'
68
+ cmd += ' --include-path "%s"' % tf.sysconfig.get_include()
69
+ cmd += ' --include-path "%s"' % os.path.join(tf.sysconfig.get_include(), 'external', 'protobuf_archive', 'src')
70
+ cmd += ' --include-path "%s"' % os.path.join(tf.sysconfig.get_include(), 'external', 'com_google_absl')
71
+ cmd += ' --include-path "%s"' % os.path.join(tf.sysconfig.get_include(), 'external', 'eigen_archive')
72
+
73
+ compiler_bindir = _find_compiler_bindir()
74
+ if compiler_bindir is None:
75
+ # Require that _find_compiler_bindir succeeds on Windows. Allow
76
+ # nvcc to use whatever is the default on Linux.
77
+ if os.name == 'nt':
78
+ raise RuntimeError('Could not find MSVC/GCC/CLANG installation on this computer. Check compiler_bindir_search_path list in "%s".' % __file__)
79
+ else:
80
+ cmd += ' --compiler-bindir "%s"' % compiler_bindir
81
+ cmd += ' 2>&1'
82
+ return cmd
83
+
84
+ #----------------------------------------------------------------------------
85
+ # Main entry point.
86
+
87
+ _plugin_cache = dict()
88
+
89
+ def get_plugin(cuda_file):
90
+ cuda_file_base = os.path.basename(cuda_file)
91
+ cuda_file_name, cuda_file_ext = os.path.splitext(cuda_file_base)
92
+
93
+ # Already in cache?
94
+ if cuda_file in _plugin_cache:
95
+ return _plugin_cache[cuda_file]
96
+
97
+ # Setup plugin.
98
+ if verbose:
99
+ print('Setting up TensorFlow plugin "%s": ' % cuda_file_base, end='', flush=True)
100
+ try:
101
+ # Hash CUDA source.
102
+ md5 = hashlib.md5()
103
+ with open(cuda_file, 'rb') as f:
104
+ md5.update(f.read())
105
+ md5.update(b'\n')
106
+
107
+ # Hash headers included by the CUDA code by running it through the preprocessor.
108
+ if not do_not_hash_included_headers:
109
+ if verbose:
110
+ print('Preprocessing... ', end='', flush=True)
111
+ with tempfile.TemporaryDirectory() as tmp_dir:
112
+ tmp_file = os.path.join(tmp_dir, cuda_file_name + '_tmp' + cuda_file_ext)
113
+ _run_cmd(_prepare_nvcc_cli('"%s" --preprocess -o "%s" --keep --keep-dir "%s"' % (cuda_file, tmp_file, tmp_dir)))
114
+ with open(tmp_file, 'rb') as f:
115
+ bad_file_str = ('"' + cuda_file.replace('\\', '/') + '"').encode('utf-8') # __FILE__ in error check macros
116
+ good_file_str = ('"' + cuda_file_base + '"').encode('utf-8')
117
+ for ln in f:
118
+ if not ln.startswith(b'# ') and not ln.startswith(b'#line '): # ignore line number pragmas
119
+ ln = ln.replace(bad_file_str, good_file_str)
120
+ md5.update(ln)
121
+ md5.update(b'\n')
122
+
123
+ # Select compiler options.
124
+ compile_opts = ''
125
+ if os.name == 'nt':
126
+ compile_opts += '"%s"' % os.path.join(tf.sysconfig.get_lib(), 'python', '_pywrap_tensorflow_internal.lib')
127
+ elif os.name == 'posix':
128
+ compile_opts += '"%s"' % os.path.join(tf.sysconfig.get_lib(), 'python', '_pywrap_tensorflow_internal.so')
129
+ compile_opts += ' --compiler-options \'-fPIC -D_GLIBCXX_USE_CXX11_ABI=0\''
130
+ else:
131
+ assert False # not Windows or Linux, w00t?
132
+ compile_opts += ' --gpu-architecture=%s' % _get_cuda_gpu_arch_string()
133
+ compile_opts += ' --use_fast_math'
134
+ nvcc_cmd = _prepare_nvcc_cli(compile_opts)
135
+
136
+ # Hash build configuration.
137
+ md5.update(('nvcc_cmd: ' + nvcc_cmd).encode('utf-8') + b'\n')
138
+ md5.update(('tf.VERSION: ' + tf.VERSION).encode('utf-8') + b'\n')
139
+ md5.update(('cuda_cache_version_tag: ' + cuda_cache_version_tag).encode('utf-8') + b'\n')
140
+
141
+ # Compile if not already compiled.
142
+ bin_file_ext = '.dll' if os.name == 'nt' else '.so'
143
+ bin_file = os.path.join(cuda_cache_path, cuda_file_name + '_' + md5.hexdigest() + bin_file_ext)
144
+ if not os.path.isfile(bin_file):
145
+ if verbose:
146
+ print('Compiling... ', end='', flush=True)
147
+ with tempfile.TemporaryDirectory() as tmp_dir:
148
+ tmp_file = os.path.join(tmp_dir, cuda_file_name + '_tmp' + bin_file_ext)
149
+ _run_cmd(nvcc_cmd + ' "%s" --shared -o "%s" --keep --keep-dir "%s"' % (cuda_file, tmp_file, tmp_dir))
150
+ os.makedirs(cuda_cache_path, exist_ok=True)
151
+ intermediate_file = os.path.join(cuda_cache_path, cuda_file_name + '_' + uuid.uuid4().hex + '_tmp' + bin_file_ext)
152
+ shutil.copyfile(tmp_file, intermediate_file)
153
+ os.rename(intermediate_file, bin_file) # atomic
154
+
155
+ # Load.
156
+ if verbose:
157
+ print('Loading... ', end='', flush=True)
158
+ plugin = tf.load_op_library(bin_file)
159
+
160
+ # Add to cache.
161
+ _plugin_cache[cuda_file] = plugin
162
+ if verbose:
163
+ print('Done.', flush=True)
164
+ return plugin
165
+
166
+ except:
167
+ if verbose:
168
+ print('Failed!', flush=True)
169
+ raise
170
+
171
+ #----------------------------------------------------------------------------
dnnlib/tflib/network.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) SenseTime Research. All rights reserved.
2
+
3
+ # Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
4
+ #
5
+ # This work is made available under the Nvidia Source Code License-NC.
6
+ # To view a copy of this license, visit
7
+ # https://nvlabs.github.io/stylegan2/license.html
8
+
9
+ """Helper for managing networks."""
10
+
11
+ import types
12
+ import inspect
13
+ import re
14
+ import uuid
15
+ import sys
16
+ import numpy as np
17
+ import tensorflow as tf
18
+
19
+ from collections import OrderedDict
20
+ from typing import Any, List, Tuple, Union
21
+
22
+ from . import tfutil
23
+ from .. import util
24
+
25
+ from .tfutil import TfExpression, TfExpressionEx
26
+
27
+ _import_handlers = [] # Custom import handlers for dealing with legacy data in pickle import.
28
+ _import_module_src = dict() # Source code for temporary modules created during pickle import.
29
+
30
+
31
+ def import_handler(handler_func):
32
+ """Function decorator for declaring custom import handlers."""
33
+ _import_handlers.append(handler_func)
34
+ return handler_func
35
+
36
+
37
+ class Network:
38
+ """Generic network abstraction.
39
+
40
+ Acts as a convenience wrapper for a parameterized network construction
41
+ function, providing several utility methods and convenient access to
42
+ the inputs/outputs/weights.
43
+
44
+ Network objects can be safely pickled and unpickled for long-term
45
+ archival purposes. The pickling works reliably as long as the underlying
46
+ network construction function is defined in a standalone Python module
47
+ that has no side effects or application-specific imports.
48
+
49
+ Args:
50
+ name: Network name. Used to select TensorFlow name and variable scopes.
51
+ func_name: Fully qualified name of the underlying network construction function, or a top-level function object.
52
+ static_kwargs: Keyword arguments to be passed in to the network construction function.
53
+
54
+ Attributes:
55
+ name: User-specified name, defaults to build func name if None.
56
+ scope: Unique TensorFlow scope containing template graph and variables, derived from the user-specified name.
57
+ static_kwargs: Arguments passed to the user-supplied build func.
58
+ components: Container for sub-networks. Passed to the build func, and retained between calls.
59
+ num_inputs: Number of input tensors.
60
+ num_outputs: Number of output tensors.
61
+ input_shapes: Input tensor shapes (NC or NCHW), including minibatch dimension.
62
+ output_shapes: Output tensor shapes (NC or NCHW), including minibatch dimension.
63
+ input_shape: Short-hand for input_shapes[0].
64
+ output_shape: Short-hand for output_shapes[0].
65
+ input_templates: Input placeholders in the template graph.
66
+ output_templates: Output tensors in the template graph.
67
+ input_names: Name string for each input.
68
+ output_names: Name string for each output.
69
+ own_vars: Variables defined by this network (local_name => var), excluding sub-networks.
70
+ vars: All variables (local_name => var).
71
+ trainables: All trainable variables (local_name => var).
72
+ var_global_to_local: Mapping from variable global names to local names.
73
+ """
74
+
75
+ def __init__(self, name: str = None, func_name: Any = None, **static_kwargs):
76
+ tfutil.assert_tf_initialized()
77
+ assert isinstance(name, str) or name is None
78
+ assert func_name is not None
79
+ assert isinstance(func_name, str) or util.is_top_level_function(func_name)
80
+ assert util.is_pickleable(static_kwargs)
81
+
82
+ self._init_fields()
83
+ self.name = name
84
+ self.static_kwargs = util.EasyDict(static_kwargs)
85
+
86
+ # Locate the user-specified network build function.
87
+ if util.is_top_level_function(func_name):
88
+ func_name = util.get_top_level_function_name(func_name)
89
+ module, self._build_func_name = util.get_module_from_obj_name(func_name)
90
+ self._build_func = util.get_obj_from_module(module, self._build_func_name)
91
+ assert callable(self._build_func)
92
+
93
+ # Dig up source code for the module containing the build function.
94
+ self._build_module_src = _import_module_src.get(module, None)
95
+ if self._build_module_src is None:
96
+ self._build_module_src = inspect.getsource(module)
97
+
98
+ # Init TensorFlow graph.
99
+ self._init_graph()
100
+ self.reset_own_vars()
101
+
102
+ def _init_fields(self) -> None:
103
+ self.name = None
104
+ self.scope = None
105
+ self.static_kwargs = util.EasyDict()
106
+ self.components = util.EasyDict()
107
+ self.num_inputs = 0
108
+ self.num_outputs = 0
109
+ self.input_shapes = [[]]
110
+ self.output_shapes = [[]]
111
+ self.input_shape = []
112
+ self.output_shape = []
113
+ self.input_templates = []
114
+ self.output_templates = []
115
+ self.input_names = []
116
+ self.output_names = []
117
+ self.own_vars = OrderedDict()
118
+ self.vars = OrderedDict()
119
+ self.trainables = OrderedDict()
120
+ self.var_global_to_local = OrderedDict()
121
+
122
+ self._build_func = None # User-supplied build function that constructs the network.
123
+ self._build_func_name = None # Name of the build function.
124
+ self._build_module_src = None # Full source code of the module containing the build function.
125
+ self._run_cache = dict() # Cached graph data for Network.run().
126
+
127
+ def _init_graph(self) -> None:
128
+ # Collect inputs.
129
+ self.input_names = []
130
+
131
+ for param in inspect.signature(self._build_func).parameters.values():
132
+ if param.kind == param.POSITIONAL_OR_KEYWORD and param.default is param.empty:
133
+ self.input_names.append(param.name)
134
+
135
+ self.num_inputs = len(self.input_names)
136
+ assert self.num_inputs >= 1
137
+
138
+ # Choose name and scope.
139
+ if self.name is None:
140
+ self.name = self._build_func_name
141
+ assert re.match("^[A-Za-z0-9_.\\-]*$", self.name)
142
+ with tf.name_scope(None):
143
+ self.scope = tf.get_default_graph().unique_name(self.name, mark_as_used=True)
144
+
145
+ # Finalize build func kwargs.
146
+ build_kwargs = dict(self.static_kwargs)
147
+ build_kwargs["is_template_graph"] = True
148
+ build_kwargs["components"] = self.components
149
+
150
+ # Build template graph.
151
+ with tfutil.absolute_variable_scope(self.scope, reuse=False), tfutil.absolute_name_scope(self.scope): # ignore surrounding scopes
152
+ assert tf.get_variable_scope().name == self.scope
153
+ assert tf.get_default_graph().get_name_scope() == self.scope
154
+ with tf.control_dependencies(None): # ignore surrounding control dependencies
155
+ self.input_templates = [tf.placeholder(tf.float32, name=name) for name in self.input_names]
156
+ out_expr = self._build_func(*self.input_templates, **build_kwargs)
157
+
158
+ # Collect outputs.
159
+ assert tfutil.is_tf_expression(out_expr) or isinstance(out_expr, tuple)
160
+ self.output_templates = [out_expr] if tfutil.is_tf_expression(out_expr) else list(out_expr)
161
+ self.num_outputs = len(self.output_templates)
162
+ assert self.num_outputs >= 1
163
+ assert all(tfutil.is_tf_expression(t) for t in self.output_templates)
164
+
165
+ # Perform sanity checks.
166
+ if any(t.shape.ndims is None for t in self.input_templates):
167
+ raise ValueError("Network input shapes not defined. Please call x.set_shape() for each input.")
168
+ if any(t.shape.ndims is None for t in self.output_templates):
169
+ raise ValueError("Network output shapes not defined. Please call x.set_shape() where applicable.")
170
+ if any(not isinstance(comp, Network) for comp in self.components.values()):
171
+ raise ValueError("Components of a Network must be Networks themselves.")
172
+ if len(self.components) != len(set(comp.name for comp in self.components.values())):
173
+ raise ValueError("Components of a Network must have unique names.")
174
+
175
+ # List inputs and outputs.
176
+ self.input_shapes = [t.shape.as_list() for t in self.input_templates]
177
+ self.output_shapes = [t.shape.as_list() for t in self.output_templates]
178
+ self.input_shape = self.input_shapes[0]
179
+ self.output_shape = self.output_shapes[0]
180
+ self.output_names = [t.name.split("/")[-1].split(":")[0] for t in self.output_templates]
181
+
182
+ # List variables.
183
+ self.own_vars = OrderedDict((var.name[len(self.scope) + 1:].split(":")[0], var) for var in tf.global_variables(self.scope + "/"))
184
+ self.vars = OrderedDict(self.own_vars)
185
+ self.vars.update((comp.name + "/" + name, var) for comp in self.components.values() for name, var in comp.vars.items())
186
+ self.trainables = OrderedDict((name, var) for name, var in self.vars.items() if var.trainable)
187
+ self.var_global_to_local = OrderedDict((var.name.split(":")[0], name) for name, var in self.vars.items())
188
+
189
+ def reset_own_vars(self) -> None:
190
+ """Re-initialize all variables of this network, excluding sub-networks."""
191
+ tfutil.run([var.initializer for var in self.own_vars.values()])
192
+
193
+ def reset_vars(self) -> None:
194
+ """Re-initialize all variables of this network, including sub-networks."""
195
+ tfutil.run([var.initializer for var in self.vars.values()])
196
+
197
+ def reset_trainables(self) -> None:
198
+ """Re-initialize all trainable variables of this network, including sub-networks."""
199
+ tfutil.run([var.initializer for var in self.trainables.values()])
200
+
201
+ def get_output_for(self, *in_expr: TfExpression, return_as_list: bool = False, **dynamic_kwargs) -> Union[TfExpression, List[TfExpression]]:
202
+ """Construct TensorFlow expression(s) for the output(s) of this network, given the input expression(s)."""
203
+ assert len(in_expr) == self.num_inputs
204
+ assert not all(expr is None for expr in in_expr)
205
+
206
+ # Finalize build func kwargs.
207
+ build_kwargs = dict(self.static_kwargs)
208
+ build_kwargs.update(dynamic_kwargs)
209
+ build_kwargs["is_template_graph"] = False
210
+ build_kwargs["components"] = self.components
211
+
212
+ # Build TensorFlow graph to evaluate the network.
213
+ with tfutil.absolute_variable_scope(self.scope, reuse=True), tf.name_scope(self.name):
214
+ assert tf.get_variable_scope().name == self.scope
215
+ valid_inputs = [expr for expr in in_expr if expr is not None]
216
+ final_inputs = []
217
+ for expr, name, shape in zip(in_expr, self.input_names, self.input_shapes):
218
+ if expr is not None:
219
+ expr = tf.identity(expr, name=name)
220
+ else:
221
+ expr = tf.zeros([tf.shape(valid_inputs[0])[0]] + shape[1:], name=name)
222
+ final_inputs.append(expr)
223
+ out_expr = self._build_func(*final_inputs, **build_kwargs)
224
+
225
+ # Propagate input shapes back to the user-specified expressions.
226
+ for expr, final in zip(in_expr, final_inputs):
227
+ if isinstance(expr, tf.Tensor):
228
+ expr.set_shape(final.shape)
229
+
230
+ # Express outputs in the desired format.
231
+ assert tfutil.is_tf_expression(out_expr) or isinstance(out_expr, tuple)
232
+ if return_as_list:
233
+ out_expr = [out_expr] if tfutil.is_tf_expression(out_expr) else list(out_expr)
234
+ return out_expr
235
+
236
+ def get_var_local_name(self, var_or_global_name: Union[TfExpression, str]) -> str:
237
+ """Get the local name of a given variable, without any surrounding name scopes."""
238
+ assert tfutil.is_tf_expression(var_or_global_name) or isinstance(var_or_global_name, str)
239
+ global_name = var_or_global_name if isinstance(var_or_global_name, str) else var_or_global_name.name
240
+ return self.var_global_to_local[global_name]
241
+
242
+ def find_var(self, var_or_local_name: Union[TfExpression, str]) -> TfExpression:
243
+ """Find variable by local or global name."""
244
+ assert tfutil.is_tf_expression(var_or_local_name) or isinstance(var_or_local_name, str)
245
+ return self.vars[var_or_local_name] if isinstance(var_or_local_name, str) else var_or_local_name
246
+
247
+ def get_var(self, var_or_local_name: Union[TfExpression, str]) -> np.ndarray:
248
+ """Get the value of a given variable as NumPy array.
249
+ Note: This method is very inefficient -- prefer to use tflib.run(list_of_vars) whenever possible."""
250
+ return self.find_var(var_or_local_name).eval()
251
+
252
+ def set_var(self, var_or_local_name: Union[TfExpression, str], new_value: Union[int, float, np.ndarray]) -> None:
253
+ """Set the value of a given variable based on the given NumPy array.
254
+ Note: This method is very inefficient -- prefer to use tflib.set_vars() whenever possible."""
255
+ tfutil.set_vars({self.find_var(var_or_local_name): new_value})
256
+
257
+ def __getstate__(self) -> dict:
258
+ """Pickle export."""
259
+ state = dict()
260
+ state["version"] = 4
261
+ state["name"] = self.name
262
+ state["static_kwargs"] = dict(self.static_kwargs)
263
+ state["components"] = dict(self.components)
264
+ state["build_module_src"] = self._build_module_src
265
+ state["build_func_name"] = self._build_func_name
266
+ state["variables"] = list(zip(self.own_vars.keys(), tfutil.run(list(self.own_vars.values()))))
267
+ return state
268
+
269
+ def __setstate__(self, state: dict) -> None:
270
+ """Pickle import."""
271
+ # pylint: disable=attribute-defined-outside-init
272
+ tfutil.assert_tf_initialized()
273
+ self._init_fields()
274
+
275
+ # Execute custom import handlers.
276
+ for handler in _import_handlers:
277
+ state = handler(state)
278
+
279
+ # Set basic fields.
280
+ assert state["version"] in [2, 3, 4]
281
+ self.name = state["name"]
282
+ self.static_kwargs = util.EasyDict(state["static_kwargs"])
283
+ self.components = util.EasyDict(state.get("components", {}))
284
+ self._build_module_src = state["build_module_src"]
285
+ self._build_func_name = state["build_func_name"]
286
+
287
+ # Create temporary module from the imported source code.
288
+ module_name = "_tflib_network_import_" + uuid.uuid4().hex
289
+ module = types.ModuleType(module_name)
290
+ sys.modules[module_name] = module
291
+ _import_module_src[module] = self._build_module_src
292
+ exec(self._build_module_src, module.__dict__) # pylint: disable=exec-used
293
+
294
+ # Locate network build function in the temporary module.
295
+ self._build_func = util.get_obj_from_module(module, self._build_func_name)
296
+ assert callable(self._build_func)
297
+
298
+ # Init TensorFlow graph.
299
+ self._init_graph()
300
+ self.reset_own_vars()
301
+ tfutil.set_vars({self.find_var(name): value for name, value in state["variables"]})
302
+
303
+ def clone(self, name: str = None, **new_static_kwargs) -> "Network":
304
+ """Create a clone of this network with its own copy of the variables."""
305
+ # pylint: disable=protected-access
306
+ net = object.__new__(Network)
307
+ net._init_fields()
308
+ net.name = name if name is not None else self.name
309
+ net.static_kwargs = util.EasyDict(self.static_kwargs)
310
+ net.static_kwargs.update(new_static_kwargs)
311
+ net._build_module_src = self._build_module_src
312
+ net._build_func_name = self._build_func_name
313
+ net._build_func = self._build_func
314
+ net._init_graph()
315
+ net.copy_vars_from(self)
316
+ return net
317
+
318
+ def copy_own_vars_from(self, src_net: "Network") -> None:
319
+ """Copy the values of all variables from the given network, excluding sub-networks."""
320
+ names = [name for name in self.own_vars.keys() if name in src_net.own_vars]
321
+ tfutil.set_vars(tfutil.run({self.vars[name]: src_net.vars[name] for name in names}))
322
+
323
+ def copy_vars_from(self, src_net: "Network") -> None:
324
+ """Copy the values of all variables from the given network, including sub-networks."""
325
+ names = [name for name in self.vars.keys() if name in src_net.vars]
326
+ tfutil.set_vars(tfutil.run({self.vars[name]: src_net.vars[name] for name in names}))
327
+
328
+ def copy_trainables_from(self, src_net: "Network") -> None:
329
+ """Copy the values of all trainable variables from the given network, including sub-networks."""
330
+ names = [name for name in self.trainables.keys() if name in src_net.trainables]
331
+ tfutil.set_vars(tfutil.run({self.vars[name]: src_net.vars[name] for name in names}))
332
+
333
+ def convert(self, new_func_name: str, new_name: str = None, **new_static_kwargs) -> "Network":
334
+ """Create new network with the given parameters, and copy all variables from this network."""
335
+ if new_name is None:
336
+ new_name = self.name
337
+ static_kwargs = dict(self.static_kwargs)
338
+ static_kwargs.update(new_static_kwargs)
339
+ net = Network(name=new_name, func_name=new_func_name, **static_kwargs)
340
+ net.copy_vars_from(self)
341
+ return net
342
+
343
+ def setup_as_moving_average_of(self, src_net: "Network", beta: TfExpressionEx = 0.99, beta_nontrainable: TfExpressionEx = 0.0) -> tf.Operation:
344
+ """Construct a TensorFlow op that updates the variables of this network
345
+ to be slightly closer to those of the given network."""
346
+ with tfutil.absolute_name_scope(self.scope + "/_MovingAvg"):
347
+ ops = []
348
+ for name, var in self.vars.items():
349
+ if name in src_net.vars:
350
+ cur_beta = beta if name in self.trainables else beta_nontrainable
351
+ new_value = tfutil.lerp(src_net.vars[name], var, cur_beta)
352
+ ops.append(var.assign(new_value))
353
+ return tf.group(*ops)
354
+
355
+ def run(self,
356
+ *in_arrays: Tuple[Union[np.ndarray, None], ...],
357
+ input_transform: dict = None,
358
+ output_transform: dict = None,
359
+ return_as_list: bool = False,
360
+ print_progress: bool = False,
361
+ minibatch_size: int = None,
362
+ num_gpus: int = 1,
363
+ assume_frozen: bool = False,
364
+ **dynamic_kwargs) -> Union[np.ndarray, Tuple[np.ndarray, ...], List[np.ndarray]]:
365
+ """Run this network for the given NumPy array(s), and return the output(s) as NumPy array(s).
366
+
367
+ Args:
368
+ input_transform: A dict specifying a custom transformation to be applied to the input tensor(s) before evaluating the network.
369
+ The dict must contain a 'func' field that points to a top-level function. The function is called with the input
370
+ TensorFlow expression(s) as positional arguments. Any remaining fields of the dict will be passed in as kwargs.
371
+ output_transform: A dict specifying a custom transformation to be applied to the output tensor(s) after evaluating the network.
372
+ The dict must contain a 'func' field that points to a top-level function. The function is called with the output
373
+ TensorFlow expression(s) as positional arguments. Any remaining fields of the dict will be passed in as kwargs.
374
+ return_as_list: True = return a list of NumPy arrays, False = return a single NumPy array, or a tuple if there are multiple outputs.
375
+ print_progress: Print progress to the console? Useful for very large input arrays.
376
+ minibatch_size: Maximum minibatch size to use, None = disable batching.
377
+ num_gpus: Number of GPUs to use.
378
+ assume_frozen: Improve multi-GPU performance by assuming that the trainable parameters will remain changed between calls.
379
+ dynamic_kwargs: Additional keyword arguments to be passed into the network build function.
380
+ """
381
+ assert len(in_arrays) == self.num_inputs
382
+ assert not all(arr is None for arr in in_arrays)
383
+ assert input_transform is None or util.is_top_level_function(input_transform["func"])
384
+ assert output_transform is None or util.is_top_level_function(output_transform["func"])
385
+ output_transform, dynamic_kwargs = _handle_legacy_output_transforms(output_transform, dynamic_kwargs)
386
+ num_items = in_arrays[0].shape[0]
387
+ if minibatch_size is None:
388
+ minibatch_size = num_items
389
+
390
+ # Construct unique hash key from all arguments that affect the TensorFlow graph.
391
+ key = dict(input_transform=input_transform, output_transform=output_transform, num_gpus=num_gpus, assume_frozen=assume_frozen, dynamic_kwargs=dynamic_kwargs)
392
+ def unwind_key(obj):
393
+ if isinstance(obj, dict):
394
+ return [(key, unwind_key(value)) for key, value in sorted(obj.items())]
395
+ if callable(obj):
396
+ return util.get_top_level_function_name(obj)
397
+ return obj
398
+ key = repr(unwind_key(key))
399
+
400
+ # Build graph.
401
+ if key not in self._run_cache:
402
+ with tfutil.absolute_name_scope(self.scope + "/_Run"), tf.control_dependencies(None):
403
+ with tf.device("/cpu:0"):
404
+ in_expr = [tf.placeholder(tf.float32, name=name) for name in self.input_names]
405
+ in_split = list(zip(*[tf.split(x, num_gpus) for x in in_expr]))
406
+
407
+ out_split = []
408
+ for gpu in range(num_gpus):
409
+ with tf.device("/gpu:%d" % gpu):
410
+ net_gpu = self.clone() if assume_frozen else self
411
+ in_gpu = in_split[gpu]
412
+
413
+ if input_transform is not None:
414
+ in_kwargs = dict(input_transform)
415
+ in_gpu = in_kwargs.pop("func")(*in_gpu, **in_kwargs)
416
+ in_gpu = [in_gpu] if tfutil.is_tf_expression(in_gpu) else list(in_gpu)
417
+
418
+ assert len(in_gpu) == self.num_inputs
419
+ out_gpu = net_gpu.get_output_for(*in_gpu, return_as_list=True, **dynamic_kwargs)
420
+
421
+ if output_transform is not None:
422
+ out_kwargs = dict(output_transform)
423
+ out_gpu = out_kwargs.pop("func")(*out_gpu, **out_kwargs)
424
+ out_gpu = [out_gpu] if tfutil.is_tf_expression(out_gpu) else list(out_gpu)
425
+
426
+ assert len(out_gpu) == self.num_outputs
427
+ out_split.append(out_gpu)
428
+
429
+ with tf.device("/cpu:0"):
430
+ out_expr = [tf.concat(outputs, axis=0) for outputs in zip(*out_split)]
431
+ self._run_cache[key] = in_expr, out_expr
432
+
433
+ # Run minibatches.
434
+ in_expr, out_expr = self._run_cache[key]
435
+ out_arrays = [np.empty([num_items] + expr.shape.as_list()[1:], expr.dtype.name) for expr in out_expr]
436
+
437
+ for mb_begin in range(0, num_items, minibatch_size):
438
+ if print_progress:
439
+ print("\r%d / %d" % (mb_begin, num_items), end="")
440
+
441
+ mb_end = min(mb_begin + minibatch_size, num_items)
442
+ mb_num = mb_end - mb_begin
443
+ mb_in = [src[mb_begin : mb_end] if src is not None else np.zeros([mb_num] + shape[1:]) for src, shape in zip(in_arrays, self.input_shapes)]
444
+ mb_out = tf.get_default_session().run(out_expr, dict(zip(in_expr, mb_in)))
445
+
446
+ for dst, src in zip(out_arrays, mb_out):
447
+ dst[mb_begin: mb_end] = src
448
+
449
+ # Done.
450
+ if print_progress:
451
+ print("\r%d / %d" % (num_items, num_items))
452
+
453
+ if not return_as_list:
454
+ out_arrays = out_arrays[0] if len(out_arrays) == 1 else tuple(out_arrays)
455
+ return out_arrays
456
+
457
+ def list_ops(self) -> List[TfExpression]:
458
+ include_prefix = self.scope + "/"
459
+ exclude_prefix = include_prefix + "_"
460
+ ops = tf.get_default_graph().get_operations()
461
+ ops = [op for op in ops if op.name.startswith(include_prefix)]
462
+ ops = [op for op in ops if not op.name.startswith(exclude_prefix)]
463
+ return ops
464
+
465
+ def list_layers(self) -> List[Tuple[str, TfExpression, List[TfExpression]]]:
466
+ """Returns a list of (layer_name, output_expr, trainable_vars) tuples corresponding to
467
+ individual layers of the network. Mainly intended to be used for reporting."""
468
+ layers = []
469
+
470
+ def recurse(scope, parent_ops, parent_vars, level):
471
+ # Ignore specific patterns.
472
+ if any(p in scope for p in ["/Shape", "/strided_slice", "/Cast", "/concat", "/Assign"]):
473
+ return
474
+
475
+ # Filter ops and vars by scope.
476
+ global_prefix = scope + "/"
477
+ local_prefix = global_prefix[len(self.scope) + 1:]
478
+ cur_ops = [op for op in parent_ops if op.name.startswith(global_prefix) or op.name == global_prefix[:-1]]
479
+ cur_vars = [(name, var) for name, var in parent_vars if name.startswith(local_prefix) or name == local_prefix[:-1]]
480
+ if not cur_ops and not cur_vars:
481
+ return
482
+
483
+ # Filter out all ops related to variables.
484
+ for var in [op for op in cur_ops if op.type.startswith("Variable")]:
485
+ var_prefix = var.name + "/"
486
+ cur_ops = [op for op in cur_ops if not op.name.startswith(var_prefix)]
487
+
488
+ # Scope does not contain ops as immediate children => recurse deeper.
489
+ contains_direct_ops = any("/" not in op.name[len(global_prefix):] and op.type not in ["Identity", "Cast", "Transpose"] for op in cur_ops)
490
+ if (level == 0 or not contains_direct_ops) and (len(cur_ops) + len(cur_vars)) > 1:
491
+ visited = set()
492
+ for rel_name in [op.name[len(global_prefix):] for op in cur_ops] + [name[len(local_prefix):] for name, _var in cur_vars]:
493
+ token = rel_name.split("/")[0]
494
+ if token not in visited:
495
+ recurse(global_prefix + token, cur_ops, cur_vars, level + 1)
496
+ visited.add(token)
497
+ return
498
+
499
+ # Report layer.
500
+ layer_name = scope[len(self.scope) + 1:]
501
+ layer_output = cur_ops[-1].outputs[0] if cur_ops else cur_vars[-1][1]
502
+ layer_trainables = [var for _name, var in cur_vars if var.trainable]
503
+ layers.append((layer_name, layer_output, layer_trainables))
504
+
505
+ recurse(self.scope, self.list_ops(), list(self.vars.items()), 0)
506
+ return layers
507
+
508
+ def print_layers(self, title: str = None, hide_layers_with_no_params: bool = False) -> None:
509
+ """Print a summary table of the network structure."""
510
+ rows = [[title if title is not None else self.name, "Params", "OutputShape", "WeightShape"]]
511
+ rows += [["---"] * 4]
512
+ total_params = 0
513
+
514
+ for layer_name, layer_output, layer_trainables in self.list_layers():
515
+ num_params = sum(int(np.prod(var.shape.as_list())) for var in layer_trainables)
516
+ weights = [var for var in layer_trainables if var.name.endswith("/weight:0")]
517
+ weights.sort(key=lambda x: len(x.name))
518
+ if len(weights) == 0 and len(layer_trainables) == 1:
519
+ weights = layer_trainables
520
+ total_params += num_params
521
+
522
+ if not hide_layers_with_no_params or num_params != 0:
523
+ num_params_str = str(num_params) if num_params > 0 else "-"
524
+ output_shape_str = str(layer_output.shape)
525
+ weight_shape_str = str(weights[0].shape) if len(weights) >= 1 else "-"
526
+ rows += [[layer_name, num_params_str, output_shape_str, weight_shape_str]]
527
+
528
+ rows += [["---"] * 4]
529
+ rows += [["Total", str(total_params), "", ""]]
530
+
531
+ widths = [max(len(cell) for cell in column) for column in zip(*rows)]
532
+ print()
533
+ for row in rows:
534
+ print(" ".join(cell + " " * (width - len(cell)) for cell, width in zip(row, widths)))
535
+ print()
536
+
537
+ def setup_weight_histograms(self, title: str = None) -> None:
538
+ """Construct summary ops to include histograms of all trainable parameters in TensorBoard."""
539
+ if title is None:
540
+ title = self.name
541
+
542
+ with tf.name_scope(None), tf.device(None), tf.control_dependencies(None):
543
+ for local_name, var in self.trainables.items():
544
+ if "/" in local_name:
545
+ p = local_name.split("/")
546
+ name = title + "_" + p[-1] + "/" + "_".join(p[:-1])
547
+ else:
548
+ name = title + "_toplevel/" + local_name
549
+
550
+ tf.summary.histogram(name, var)
551
+
552
+ #----------------------------------------------------------------------------
553
+ # Backwards-compatible emulation of legacy output transformation in Network.run().
554
+
555
+ _print_legacy_warning = True
556
+
557
+ def _handle_legacy_output_transforms(output_transform, dynamic_kwargs):
558
+ global _print_legacy_warning
559
+ legacy_kwargs = ["out_mul", "out_add", "out_shrink", "out_dtype"]
560
+ if not any(kwarg in dynamic_kwargs for kwarg in legacy_kwargs):
561
+ return output_transform, dynamic_kwargs
562
+
563
+ if _print_legacy_warning:
564
+ _print_legacy_warning = False
565
+ print()
566
+ print("WARNING: Old-style output transformations in Network.run() are deprecated.")
567
+ print("Consider using 'output_transform=dict(func=tflib.convert_images_to_uint8)'")
568
+ print("instead of 'out_mul=127.5, out_add=127.5, out_dtype=np.uint8'.")
569
+ print()
570
+ assert output_transform is None
571
+
572
+ new_kwargs = dict(dynamic_kwargs)
573
+ new_transform = {kwarg: new_kwargs.pop(kwarg) for kwarg in legacy_kwargs if kwarg in dynamic_kwargs}
574
+ new_transform["func"] = _legacy_output_transform_func
575
+ return new_transform, new_kwargs
576
+
577
+ def _legacy_output_transform_func(*expr, out_mul=1.0, out_add=0.0, out_shrink=1, out_dtype=None):
578
+ if out_mul != 1.0:
579
+ expr = [x * out_mul for x in expr]
580
+
581
+ if out_add != 0.0:
582
+ expr = [x + out_add for x in expr]
583
+
584
+ if out_shrink > 1:
585
+ ksize = [1, 1, out_shrink, out_shrink]
586
+ expr = [tf.nn.avg_pool(x, ksize=ksize, strides=ksize, padding="VALID", data_format="NCHW") for x in expr]
587
+
588
+ if out_dtype is not None:
589
+ if tf.as_dtype(out_dtype).is_integer:
590
+ expr = [tf.round(x) for x in expr]
591
+ expr = [tf.saturate_cast(x, out_dtype) for x in expr]
592
+ return expr
dnnlib/tflib/ops/__init__.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) SenseTime Research. All rights reserved.
2
+
3
+ # Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
4
+ #
5
+ # This work is made available under the Nvidia Source Code License-NC.
6
+ # To view a copy of this license, visit
7
+ # https://nvlabs.github.io/stylegan2/license.html
8
+
9
+ # empty
dnnlib/tflib/ops/fused_bias_act.cu ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Copyright (c) SenseTime Research. All rights reserved.
2
+
3
+ // Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
4
+ //
5
+ // This work is made available under the Nvidia Source Code License-NC.
6
+ // To view a copy of this license, visit
7
+ // https://nvlabs.github.io/stylegan2/license.html
8
+
9
+ #define EIGEN_USE_GPU
10
+ #define __CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS__
11
+ #include "tensorflow/core/framework/op.h"
12
+ #include "tensorflow/core/framework/op_kernel.h"
13
+ #include "tensorflow/core/framework/shape_inference.h"
14
+ #include <stdio.h>
15
+
16
+ using namespace tensorflow;
17
+ using namespace tensorflow::shape_inference;
18
+
19
+ #define OP_CHECK_CUDA_ERROR(CTX, CUDA_CALL) do { cudaError_t err = CUDA_CALL; OP_REQUIRES(CTX, err == cudaSuccess, errors::Internal(cudaGetErrorName(err))); } while (false)
20
+
21
+ //------------------------------------------------------------------------
22
+ // CUDA kernel.
23
+
24
+ template <class T>
25
+ struct FusedBiasActKernelParams
26
+ {
27
+ const T* x; // [sizeX]
28
+ const T* b; // [sizeB] or NULL
29
+ const T* ref; // [sizeX] or NULL
30
+ T* y; // [sizeX]
31
+
32
+ int grad;
33
+ int axis;
34
+ int act;
35
+ float alpha;
36
+ float gain;
37
+
38
+ int sizeX;
39
+ int sizeB;
40
+ int stepB;
41
+ int loopX;
42
+ };
43
+
44
+ template <class T>
45
+ static __global__ void FusedBiasActKernel(const FusedBiasActKernelParams<T> p)
46
+ {
47
+ const float expRange = 80.0f;
48
+ const float halfExpRange = 40.0f;
49
+ const float seluScale = 1.0507009873554804934193349852946f;
50
+ const float seluAlpha = 1.6732632423543772848170429916717f;
51
+
52
+ // Loop over elements.
53
+ int xi = blockIdx.x * p.loopX * blockDim.x + threadIdx.x;
54
+ for (int loopIdx = 0; loopIdx < p.loopX && xi < p.sizeX; loopIdx++, xi += blockDim.x)
55
+ {
56
+ // Load and apply bias.
57
+ float x = (float)p.x[xi];
58
+ if (p.b)
59
+ x += (float)p.b[(xi / p.stepB) % p.sizeB];
60
+ float ref = (p.ref) ? (float)p.ref[xi] : 0.0f;
61
+ if (p.gain != 0.0f & p.act != 9)
62
+ ref /= p.gain;
63
+
64
+ // Evaluate activation func.
65
+ float y;
66
+ switch (p.act * 10 + p.grad)
67
+ {
68
+ // linear
69
+ default:
70
+ case 10: y = x; break;
71
+ case 11: y = x; break;
72
+ case 12: y = 0.0f; break;
73
+
74
+ // relu
75
+ case 20: y = (x > 0.0f) ? x : 0.0f; break;
76
+ case 21: y = (ref > 0.0f) ? x : 0.0f; break;
77
+ case 22: y = 0.0f; break;
78
+
79
+ // lrelu
80
+ case 30: y = (x > 0.0f) ? x : x * p.alpha; break;
81
+ case 31: y = (ref > 0.0f) ? x : x * p.alpha; break;
82
+ case 32: y = 0.0f; break;
83
+
84
+ // tanh
85
+ case 40: { float c = expf(x); float d = 1.0f / c; y = (x < -expRange) ? -1.0f : (x > expRange) ? 1.0f : (c - d) / (c + d); } break;
86
+ case 41: y = x * (1.0f - ref * ref); break;
87
+ case 42: y = x * (1.0f - ref * ref) * (-2.0f * ref); break;
88
+
89
+ // sigmoid
90
+ case 50: y = (x < -expRange) ? 0.0f : 1.0f / (expf(-x) + 1.0f); break;
91
+ case 51: y = x * ref * (1.0f - ref); break;
92
+ case 52: y = x * ref * (1.0f - ref) * (1.0f - 2.0f * ref); break;
93
+
94
+ // elu
95
+ case 60: y = (x >= 0.0f) ? x : expf(x) - 1.0f; break;
96
+ case 61: y = (ref >= 0.0f) ? x : x * (ref + 1.0f); break;
97
+ case 62: y = (ref >= 0.0f) ? 0.0f : x * (ref + 1.0f); break;
98
+
99
+ // selu
100
+ case 70: y = (x >= 0.0f) ? seluScale * x : (seluScale * seluAlpha) * (expf(x) - 1.0f); break;
101
+ case 71: y = (ref >= 0.0f) ? x * seluScale : x * (ref + seluScale * seluAlpha); break;
102
+ case 72: y = (ref >= 0.0f) ? 0.0f : x * (ref + seluScale * seluAlpha); break;
103
+
104
+ // softplus
105
+ case 80: y = (x > expRange) ? x : logf(expf(x) + 1.0f); break;
106
+ case 81: y = x * (1.0f - expf(-ref)); break;
107
+ case 82: { float c = expf(-ref); y = x * c * (1.0f - c); } break;
108
+
109
+ // swish
110
+ case 90: y = (x < -expRange) ? 0.0f : x / (expf(-x) + 1.0f); break;
111
+ case 91: { float c = expf(ref); float d = c + 1.0f; y = (ref > halfExpRange) ? x : x * c * (ref + d) / (d * d); } break;
112
+ case 92: { float c = expf(ref); float d = c + 1.0f; y = (ref > halfExpRange) ? 0.0f : x * c * (ref * (2.0f - d) + 2.0f * d) / (d * d * d); } break;
113
+ }
114
+
115
+ // Apply gain and store.
116
+ p.y[xi] = (T)(y * p.gain);
117
+ }
118
+ }
119
+
120
+ //------------------------------------------------------------------------
121
+ // TensorFlow op.
122
+
123
+ template <class T>
124
+ struct FusedBiasActOp : public OpKernel
125
+ {
126
+ FusedBiasActKernelParams<T> m_attribs;
127
+
128
+ FusedBiasActOp(OpKernelConstruction* ctx) : OpKernel(ctx)
129
+ {
130
+ memset(&m_attribs, 0, sizeof(m_attribs));
131
+ OP_REQUIRES_OK(ctx, ctx->GetAttr("grad", &m_attribs.grad));
132
+ OP_REQUIRES_OK(ctx, ctx->GetAttr("axis", &m_attribs.axis));
133
+ OP_REQUIRES_OK(ctx, ctx->GetAttr("act", &m_attribs.act));
134
+ OP_REQUIRES_OK(ctx, ctx->GetAttr("alpha", &m_attribs.alpha));
135
+ OP_REQUIRES_OK(ctx, ctx->GetAttr("gain", &m_attribs.gain));
136
+ OP_REQUIRES(ctx, m_attribs.grad >= 0, errors::InvalidArgument("grad must be non-negative"));
137
+ OP_REQUIRES(ctx, m_attribs.axis >= 0, errors::InvalidArgument("axis must be non-negative"));
138
+ OP_REQUIRES(ctx, m_attribs.act >= 0, errors::InvalidArgument("act must be non-negative"));
139
+ }
140
+
141
+ void Compute(OpKernelContext* ctx)
142
+ {
143
+ FusedBiasActKernelParams<T> p = m_attribs;
144
+ cudaStream_t stream = ctx->eigen_device<Eigen::GpuDevice>().stream();
145
+
146
+ const Tensor& x = ctx->input(0); // [...]
147
+ const Tensor& b = ctx->input(1); // [sizeB] or [0]
148
+ const Tensor& ref = ctx->input(2); // x.shape or [0]
149
+ p.x = x.flat<T>().data();
150
+ p.b = (b.NumElements()) ? b.flat<T>().data() : NULL;
151
+ p.ref = (ref.NumElements()) ? ref.flat<T>().data() : NULL;
152
+ OP_REQUIRES(ctx, b.NumElements() == 0 || m_attribs.axis < x.dims(), errors::InvalidArgument("axis out of bounds"));
153
+ OP_REQUIRES(ctx, b.dims() == 1, errors::InvalidArgument("b must have rank 1"));
154
+ OP_REQUIRES(ctx, b.NumElements() == 0 || b.NumElements() == x.dim_size(m_attribs.axis), errors::InvalidArgument("b has wrong number of elements"));
155
+ OP_REQUIRES(ctx, ref.NumElements() == ((p.grad == 0) ? 0 : x.NumElements()), errors::InvalidArgument("ref has wrong number of elements"));
156
+ OP_REQUIRES(ctx, x.NumElements() <= kint32max, errors::InvalidArgument("x is too large"));
157
+
158
+ p.sizeX = (int)x.NumElements();
159
+ p.sizeB = (int)b.NumElements();
160
+ p.stepB = 1;
161
+ for (int i = m_attribs.axis + 1; i < x.dims(); i++)
162
+ p.stepB *= (int)x.dim_size(i);
163
+
164
+ Tensor* y = NULL; // x.shape
165
+ OP_REQUIRES_OK(ctx, ctx->allocate_output(0, x.shape(), &y));
166
+ p.y = y->flat<T>().data();
167
+
168
+ p.loopX = 4;
169
+ int blockSize = 4 * 32;
170
+ int gridSize = (p.sizeX - 1) / (p.loopX * blockSize) + 1;
171
+ void* args[] = {&p};
172
+ OP_CHECK_CUDA_ERROR(ctx, cudaLaunchKernel((void*)FusedBiasActKernel<T>, gridSize, blockSize, args, 0, stream));
173
+ }
174
+ };
175
+
176
+ REGISTER_OP("FusedBiasAct")
177
+ .Input ("x: T")
178
+ .Input ("b: T")
179
+ .Input ("ref: T")
180
+ .Output ("y: T")
181
+ .Attr ("T: {float, half}")
182
+ .Attr ("grad: int = 0")
183
+ .Attr ("axis: int = 1")
184
+ .Attr ("act: int = 0")
185
+ .Attr ("alpha: float = 0.0")
186
+ .Attr ("gain: float = 1.0");
187
+ REGISTER_KERNEL_BUILDER(Name("FusedBiasAct").Device(DEVICE_GPU).TypeConstraint<float>("T"), FusedBiasActOp<float>);
188
+ REGISTER_KERNEL_BUILDER(Name("FusedBiasAct").Device(DEVICE_GPU).TypeConstraint<Eigen::half>("T"), FusedBiasActOp<Eigen::half>);
189
+
190
+ //------------------------------------------------------------------------
dnnlib/tflib/ops/fused_bias_act.py ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) SenseTime Research. All rights reserved.
2
+
3
+ # Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
4
+ #
5
+ # This work is made available under the Nvidia Source Code License-NC.
6
+ # To view a copy of this license, visit
7
+ # https://nvlabs.github.io/stylegan2/license.html
8
+
9
+ """Custom TensorFlow ops for efficient bias and activation."""
10
+
11
+ import os
12
+ import numpy as np
13
+ import tensorflow as tf
14
+ from .. import custom_ops
15
+ from ...util import EasyDict
16
+
17
+ def _get_plugin():
18
+ return custom_ops.get_plugin(os.path.splitext(__file__)[0] + '.cu')
19
+
20
+ #----------------------------------------------------------------------------
21
+
22
+ activation_funcs = {
23
+ 'linear': EasyDict(func=lambda x, **_: x, def_alpha=None, def_gain=1.0, cuda_idx=1, ref='y', zero_2nd_grad=True),
24
+ 'relu': EasyDict(func=lambda x, **_: tf.nn.relu(x), def_alpha=None, def_gain=np.sqrt(2), cuda_idx=2, ref='y', zero_2nd_grad=True),
25
+ 'lrelu': EasyDict(func=lambda x, alpha, **_: tf.nn.leaky_relu(x, alpha), def_alpha=0.2, def_gain=np.sqrt(2), cuda_idx=3, ref='y', zero_2nd_grad=True),
26
+ 'tanh': EasyDict(func=lambda x, **_: tf.nn.tanh(x), def_alpha=None, def_gain=1.0, cuda_idx=4, ref='y', zero_2nd_grad=False),
27
+ 'sigmoid': EasyDict(func=lambda x, **_: tf.nn.sigmoid(x), def_alpha=None, def_gain=1.0, cuda_idx=5, ref='y', zero_2nd_grad=False),
28
+ 'elu': EasyDict(func=lambda x, **_: tf.nn.elu(x), def_alpha=None, def_gain=1.0, cuda_idx=6, ref='y', zero_2nd_grad=False),
29
+ 'selu': EasyDict(func=lambda x, **_: tf.nn.selu(x), def_alpha=None, def_gain=1.0, cuda_idx=7, ref='y', zero_2nd_grad=False),
30
+ 'softplus': EasyDict(func=lambda x, **_: tf.nn.softplus(x), def_alpha=None, def_gain=1.0, cuda_idx=8, ref='y', zero_2nd_grad=False),
31
+ 'swish': EasyDict(func=lambda x, **_: tf.nn.sigmoid(x) * x, def_alpha=None, def_gain=np.sqrt(2), cuda_idx=9, ref='x', zero_2nd_grad=False),
32
+ }
33
+
34
+ #----------------------------------------------------------------------------
35
+
36
+ def fused_bias_act(x, b=None, axis=1, act='linear', alpha=None, gain=None, impl='cuda'):
37
+ r"""Fused bias and activation function.
38
+
39
+ Adds bias `b` to activation tensor `x`, evaluates activation function `act`,
40
+ and scales the result by `gain`. Each of the steps is optional. In most cases,
41
+ the fused op is considerably more efficient than performing the same calculation
42
+ using standard TensorFlow ops. It supports first and second order gradients,
43
+ but not third order gradients.
44
+
45
+ Args:
46
+ x: Input activation tensor. Can have any shape, but if `b` is defined, the
47
+ dimension corresponding to `axis`, as well as the rank, must be known.
48
+ b: Bias vector, or `None` to disable. Must be a 1D tensor of the same type
49
+ as `x`. The shape must be known, and it must match the dimension of `x`
50
+ corresponding to `axis`.
51
+ axis: The dimension in `x` corresponding to the elements of `b`.
52
+ The value of `axis` is ignored if `b` is not specified.
53
+ act: Name of the activation function to evaluate, or `"linear"` to disable.
54
+ Can be e.g. `"relu"`, `"lrelu"`, `"tanh"`, `"sigmoid"`, `"swish"`, etc.
55
+ See `activation_funcs` for a full list. `None` is not allowed.
56
+ alpha: Shape parameter for the activation function, or `None` to use the default.
57
+ gain: Scaling factor for the output tensor, or `None` to use default.
58
+ See `activation_funcs` for the default scaling of each activation function.
59
+ If unsure, consider specifying `1.0`.
60
+ impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
61
+
62
+ Returns:
63
+ Tensor of the same shape and datatype as `x`.
64
+ """
65
+
66
+ impl_dict = {
67
+ 'ref': _fused_bias_act_ref,
68
+ 'cuda': _fused_bias_act_cuda,
69
+ }
70
+ return impl_dict[impl](x=x, b=b, axis=axis, act=act, alpha=alpha, gain=gain)
71
+
72
+ #----------------------------------------------------------------------------
73
+
74
+ def _fused_bias_act_ref(x, b, axis, act, alpha, gain):
75
+ """Slow reference implementation of `fused_bias_act()` using standard TensorFlow ops."""
76
+
77
+ # Validate arguments.
78
+ x = tf.convert_to_tensor(x)
79
+ b = tf.convert_to_tensor(b) if b is not None else tf.constant([], dtype=x.dtype)
80
+ act_spec = activation_funcs[act]
81
+ assert b.shape.rank == 1 and (b.shape[0] == 0 or b.shape[0] == x.shape[axis])
82
+ assert b.shape[0] == 0 or 0 <= axis < x.shape.rank
83
+ if alpha is None:
84
+ alpha = act_spec.def_alpha
85
+ if gain is None:
86
+ gain = act_spec.def_gain
87
+
88
+ # Add bias.
89
+ if b.shape[0] != 0:
90
+ x += tf.reshape(b, [-1 if i == axis else 1 for i in range(x.shape.rank)])
91
+
92
+ # Evaluate activation function.
93
+ x = act_spec.func(x, alpha=alpha)
94
+
95
+ # Scale by gain.
96
+ if gain != 1:
97
+ x *= gain
98
+ return x
99
+
100
+ #----------------------------------------------------------------------------
101
+
102
+ def _fused_bias_act_cuda(x, b, axis, act, alpha, gain):
103
+ """Fast CUDA implementation of `fused_bias_act()` using custom ops."""
104
+
105
+ # Validate arguments.
106
+ x = tf.convert_to_tensor(x)
107
+ empty_tensor = tf.constant([], dtype=x.dtype)
108
+ b = tf.convert_to_tensor(b) if b is not None else empty_tensor
109
+ act_spec = activation_funcs[act]
110
+ assert b.shape.rank == 1 and (b.shape[0] == 0 or b.shape[0] == x.shape[axis])
111
+ assert b.shape[0] == 0 or 0 <= axis < x.shape.rank
112
+ if alpha is None:
113
+ alpha = act_spec.def_alpha
114
+ if gain is None:
115
+ gain = act_spec.def_gain
116
+
117
+ # Special cases.
118
+ if act == 'linear' and b is None and gain == 1.0:
119
+ return x
120
+ if act_spec.cuda_idx is None:
121
+ return _fused_bias_act_ref(x=x, b=b, axis=axis, act=act, alpha=alpha, gain=gain)
122
+
123
+ # CUDA kernel.
124
+ cuda_kernel = _get_plugin().fused_bias_act
125
+ cuda_kwargs = dict(axis=axis, act=act_spec.cuda_idx, alpha=alpha, gain=gain)
126
+
127
+ # Forward pass: y = func(x, b).
128
+ def func_y(x, b):
129
+ y = cuda_kernel(x=x, b=b, ref=empty_tensor, grad=0, **cuda_kwargs)
130
+ y.set_shape(x.shape)
131
+ return y
132
+
133
+ # Backward pass: dx, db = grad(dy, x, y)
134
+ def grad_dx(dy, x, y):
135
+ ref = {'x': x, 'y': y}[act_spec.ref]
136
+ dx = cuda_kernel(x=dy, b=empty_tensor, ref=ref, grad=1, **cuda_kwargs)
137
+ dx.set_shape(x.shape)
138
+ return dx
139
+ def grad_db(dx):
140
+ if b.shape[0] == 0:
141
+ return empty_tensor
142
+ db = dx
143
+ if axis < x.shape.rank - 1:
144
+ db = tf.reduce_sum(db, list(range(axis + 1, x.shape.rank)))
145
+ if axis > 0:
146
+ db = tf.reduce_sum(db, list(range(axis)))
147
+ db.set_shape(b.shape)
148
+ return db
149
+
150
+ # Second order gradients: d_dy, d_x = grad2(d_dx, d_db, x, y)
151
+ def grad2_d_dy(d_dx, d_db, x, y):
152
+ ref = {'x': x, 'y': y}[act_spec.ref]
153
+ d_dy = cuda_kernel(x=d_dx, b=d_db, ref=ref, grad=1, **cuda_kwargs)
154
+ d_dy.set_shape(x.shape)
155
+ return d_dy
156
+ def grad2_d_x(d_dx, d_db, x, y):
157
+ ref = {'x': x, 'y': y}[act_spec.ref]
158
+ d_x = cuda_kernel(x=d_dx, b=d_db, ref=ref, grad=2, **cuda_kwargs)
159
+ d_x.set_shape(x.shape)
160
+ return d_x
161
+
162
+ # Fast version for piecewise-linear activation funcs.
163
+ @tf.custom_gradient
164
+ def func_zero_2nd_grad(x, b):
165
+ y = func_y(x, b)
166
+ @tf.custom_gradient
167
+ def grad(dy):
168
+ dx = grad_dx(dy, x, y)
169
+ db = grad_db(dx)
170
+ def grad2(d_dx, d_db):
171
+ d_dy = grad2_d_dy(d_dx, d_db, x, y)
172
+ return d_dy
173
+ return (dx, db), grad2
174
+ return y, grad
175
+
176
+ # Slow version for general activation funcs.
177
+ @tf.custom_gradient
178
+ def func_nonzero_2nd_grad(x, b):
179
+ y = func_y(x, b)
180
+ def grad_wrap(dy):
181
+ @tf.custom_gradient
182
+ def grad_impl(dy, x):
183
+ dx = grad_dx(dy, x, y)
184
+ db = grad_db(dx)
185
+ def grad2(d_dx, d_db):
186
+ d_dy = grad2_d_dy(d_dx, d_db, x, y)
187
+ d_x = grad2_d_x(d_dx, d_db, x, y)
188
+ return d_dy, d_x
189
+ return (dx, db), grad2
190
+ return grad_impl(dy, x)
191
+ return y, grad_wrap
192
+
193
+ # Which version to use?
194
+ if act_spec.zero_2nd_grad:
195
+ return func_zero_2nd_grad(x, b)
196
+ return func_nonzero_2nd_grad(x, b)
197
+
198
+ #----------------------------------------------------------------------------
dnnlib/tflib/ops/upfirdn_2d.cu ADDED
@@ -0,0 +1,328 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Copyright (c) SenseTime Research. All rights reserved.
2
+
3
+ // Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
4
+ //
5
+ // This work is made available under the Nvidia Source Code License-NC.
6
+ // To view a copy of this license, visit
7
+ // https://nvlabs.github.io/stylegan2/license.html
8
+
9
+ #define EIGEN_USE_GPU
10
+ #define __CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS__
11
+ #include "tensorflow/core/framework/op.h"
12
+ #include "tensorflow/core/framework/op_kernel.h"
13
+ #include "tensorflow/core/framework/shape_inference.h"
14
+ #include <stdio.h>
15
+
16
+ using namespace tensorflow;
17
+ using namespace tensorflow::shape_inference;
18
+
19
+ //------------------------------------------------------------------------
20
+ // Helpers.
21
+
22
+ #define OP_CHECK_CUDA_ERROR(CTX, CUDA_CALL) do { cudaError_t err = CUDA_CALL; OP_REQUIRES(CTX, err == cudaSuccess, errors::Internal(cudaGetErrorName(err))); } while (false)
23
+
24
+ static __host__ __device__ __forceinline__ int floorDiv(int a, int b)
25
+ {
26
+ int c = a / b;
27
+ if (c * b > a)
28
+ c--;
29
+ return c;
30
+ }
31
+
32
+ //------------------------------------------------------------------------
33
+ // CUDA kernel params.
34
+
35
+ template <class T>
36
+ struct UpFirDn2DKernelParams
37
+ {
38
+ const T* x; // [majorDim, inH, inW, minorDim]
39
+ const T* k; // [kernelH, kernelW]
40
+ T* y; // [majorDim, outH, outW, minorDim]
41
+
42
+ int upx;
43
+ int upy;
44
+ int downx;
45
+ int downy;
46
+ int padx0;
47
+ int padx1;
48
+ int pady0;
49
+ int pady1;
50
+
51
+ int majorDim;
52
+ int inH;
53
+ int inW;
54
+ int minorDim;
55
+ int kernelH;
56
+ int kernelW;
57
+ int outH;
58
+ int outW;
59
+ int loopMajor;
60
+ int loopX;
61
+ };
62
+
63
+ //------------------------------------------------------------------------
64
+ // General CUDA implementation for large filter kernels.
65
+
66
+ template <class T>
67
+ static __global__ void UpFirDn2DKernel_large(const UpFirDn2DKernelParams<T> p)
68
+ {
69
+ // Calculate thread index.
70
+ int minorIdx = blockIdx.x * blockDim.x + threadIdx.x;
71
+ int outY = minorIdx / p.minorDim;
72
+ minorIdx -= outY * p.minorDim;
73
+ int outXBase = blockIdx.y * p.loopX * blockDim.y + threadIdx.y;
74
+ int majorIdxBase = blockIdx.z * p.loopMajor;
75
+ if (outXBase >= p.outW || outY >= p.outH || majorIdxBase >= p.majorDim)
76
+ return;
77
+
78
+ // Setup Y receptive field.
79
+ int midY = outY * p.downy + p.upy - 1 - p.pady0;
80
+ int inY = min(max(floorDiv(midY, p.upy), 0), p.inH);
81
+ int h = min(max(floorDiv(midY + p.kernelH, p.upy), 0), p.inH) - inY;
82
+ int kernelY = midY + p.kernelH - (inY + 1) * p.upy;
83
+
84
+ // Loop over majorDim and outX.
85
+ for (int loopMajor = 0, majorIdx = majorIdxBase; loopMajor < p.loopMajor && majorIdx < p.majorDim; loopMajor++, majorIdx++)
86
+ for (int loopX = 0, outX = outXBase; loopX < p.loopX && outX < p.outW; loopX++, outX += blockDim.y)
87
+ {
88
+ // Setup X receptive field.
89
+ int midX = outX * p.downx + p.upx - 1 - p.padx0;
90
+ int inX = min(max(floorDiv(midX, p.upx), 0), p.inW);
91
+ int w = min(max(floorDiv(midX + p.kernelW, p.upx), 0), p.inW) - inX;
92
+ int kernelX = midX + p.kernelW - (inX + 1) * p.upx;
93
+
94
+ // Initialize pointers.
95
+ const T* xp = &p.x[((majorIdx * p.inH + inY) * p.inW + inX) * p.minorDim + minorIdx];
96
+ const T* kp = &p.k[kernelY * p.kernelW + kernelX];
97
+ int xpx = p.minorDim;
98
+ int kpx = -p.upx;
99
+ int xpy = p.inW * p.minorDim;
100
+ int kpy = -p.upy * p.kernelW;
101
+
102
+ // Inner loop.
103
+ float v = 0.0f;
104
+ for (int y = 0; y < h; y++)
105
+ {
106
+ for (int x = 0; x < w; x++)
107
+ {
108
+ v += (float)(*xp) * (float)(*kp);
109
+ xp += xpx;
110
+ kp += kpx;
111
+ }
112
+ xp += xpy - w * xpx;
113
+ kp += kpy - w * kpx;
114
+ }
115
+
116
+ // Store result.
117
+ p.y[((majorIdx * p.outH + outY) * p.outW + outX) * p.minorDim + minorIdx] = (T)v;
118
+ }
119
+ }
120
+
121
+ //------------------------------------------------------------------------
122
+ // Specialized CUDA implementation for small filter kernels.
123
+
124
+ template <class T, int upx, int upy, int downx, int downy, int kernelW, int kernelH, int tileOutW, int tileOutH>
125
+ static __global__ void UpFirDn2DKernel_small(const UpFirDn2DKernelParams<T> p)
126
+ {
127
+ //assert(kernelW % upx == 0);
128
+ //assert(kernelH % upy == 0);
129
+ const int tileInW = ((tileOutW - 1) * downx + kernelW - 1) / upx + 1;
130
+ const int tileInH = ((tileOutH - 1) * downy + kernelH - 1) / upy + 1;
131
+ __shared__ volatile float sk[kernelH][kernelW];
132
+ __shared__ volatile float sx[tileInH][tileInW];
133
+
134
+ // Calculate tile index.
135
+ int minorIdx = blockIdx.x;
136
+ int tileOutY = minorIdx / p.minorDim;
137
+ minorIdx -= tileOutY * p.minorDim;
138
+ tileOutY *= tileOutH;
139
+ int tileOutXBase = blockIdx.y * p.loopX * tileOutW;
140
+ int majorIdxBase = blockIdx.z * p.loopMajor;
141
+ if (tileOutXBase >= p.outW | tileOutY >= p.outH | majorIdxBase >= p.majorDim)
142
+ return;
143
+
144
+ // Load filter kernel (flipped).
145
+ for (int tapIdx = threadIdx.x; tapIdx < kernelH * kernelW; tapIdx += blockDim.x)
146
+ {
147
+ int ky = tapIdx / kernelW;
148
+ int kx = tapIdx - ky * kernelW;
149
+ float v = 0.0f;
150
+ if (kx < p.kernelW & ky < p.kernelH)
151
+ v = (float)p.k[(p.kernelH - 1 - ky) * p.kernelW + (p.kernelW - 1 - kx)];
152
+ sk[ky][kx] = v;
153
+ }
154
+
155
+ // Loop over majorDim and outX.
156
+ for (int loopMajor = 0, majorIdx = majorIdxBase; loopMajor < p.loopMajor & majorIdx < p.majorDim; loopMajor++, majorIdx++)
157
+ for (int loopX = 0, tileOutX = tileOutXBase; loopX < p.loopX & tileOutX < p.outW; loopX++, tileOutX += tileOutW)
158
+ {
159
+ // Load input pixels.
160
+ int tileMidX = tileOutX * downx + upx - 1 - p.padx0;
161
+ int tileMidY = tileOutY * downy + upy - 1 - p.pady0;
162
+ int tileInX = floorDiv(tileMidX, upx);
163
+ int tileInY = floorDiv(tileMidY, upy);
164
+ __syncthreads();
165
+ for (int inIdx = threadIdx.x; inIdx < tileInH * tileInW; inIdx += blockDim.x)
166
+ {
167
+ int relInY = inIdx / tileInW;
168
+ int relInX = inIdx - relInY * tileInW;
169
+ int inX = relInX + tileInX;
170
+ int inY = relInY + tileInY;
171
+ float v = 0.0f;
172
+ if (inX >= 0 & inY >= 0 & inX < p.inW & inY < p.inH)
173
+ v = (float)p.x[((majorIdx * p.inH + inY) * p.inW + inX) * p.minorDim + minorIdx];
174
+ sx[relInY][relInX] = v;
175
+ }
176
+
177
+ // Loop over output pixels.
178
+ __syncthreads();
179
+ for (int outIdx = threadIdx.x; outIdx < tileOutH * tileOutW; outIdx += blockDim.x)
180
+ {
181
+ int relOutY = outIdx / tileOutW;
182
+ int relOutX = outIdx - relOutY * tileOutW;
183
+ int outX = relOutX + tileOutX;
184
+ int outY = relOutY + tileOutY;
185
+
186
+ // Setup receptive field.
187
+ int midX = tileMidX + relOutX * downx;
188
+ int midY = tileMidY + relOutY * downy;
189
+ int inX = floorDiv(midX, upx);
190
+ int inY = floorDiv(midY, upy);
191
+ int relInX = inX - tileInX;
192
+ int relInY = inY - tileInY;
193
+ int kernelX = (inX + 1) * upx - midX - 1; // flipped
194
+ int kernelY = (inY + 1) * upy - midY - 1; // flipped
195
+
196
+ // Inner loop.
197
+ float v = 0.0f;
198
+ #pragma unroll
199
+ for (int y = 0; y < kernelH / upy; y++)
200
+ #pragma unroll
201
+ for (int x = 0; x < kernelW / upx; x++)
202
+ v += sx[relInY + y][relInX + x] * sk[kernelY + y * upy][kernelX + x * upx];
203
+
204
+ // Store result.
205
+ if (outX < p.outW & outY < p.outH)
206
+ p.y[((majorIdx * p.outH + outY) * p.outW + outX) * p.minorDim + minorIdx] = (T)v;
207
+ }
208
+ }
209
+ }
210
+
211
+ //------------------------------------------------------------------------
212
+ // TensorFlow op.
213
+
214
+ template <class T>
215
+ struct UpFirDn2DOp : public OpKernel
216
+ {
217
+ UpFirDn2DKernelParams<T> m_attribs;
218
+
219
+ UpFirDn2DOp(OpKernelConstruction* ctx) : OpKernel(ctx)
220
+ {
221
+ memset(&m_attribs, 0, sizeof(m_attribs));
222
+ OP_REQUIRES_OK(ctx, ctx->GetAttr("upx", &m_attribs.upx));
223
+ OP_REQUIRES_OK(ctx, ctx->GetAttr("upy", &m_attribs.upy));
224
+ OP_REQUIRES_OK(ctx, ctx->GetAttr("downx", &m_attribs.downx));
225
+ OP_REQUIRES_OK(ctx, ctx->GetAttr("downy", &m_attribs.downy));
226
+ OP_REQUIRES_OK(ctx, ctx->GetAttr("padx0", &m_attribs.padx0));
227
+ OP_REQUIRES_OK(ctx, ctx->GetAttr("padx1", &m_attribs.padx1));
228
+ OP_REQUIRES_OK(ctx, ctx->GetAttr("pady0", &m_attribs.pady0));
229
+ OP_REQUIRES_OK(ctx, ctx->GetAttr("pady1", &m_attribs.pady1));
230
+ OP_REQUIRES(ctx, m_attribs.upx >= 1 && m_attribs.upy >= 1, errors::InvalidArgument("upx and upy must be at least 1x1"));
231
+ OP_REQUIRES(ctx, m_attribs.downx >= 1 && m_attribs.downy >= 1, errors::InvalidArgument("downx and downy must be at least 1x1"));
232
+ }
233
+
234
+ void Compute(OpKernelContext* ctx)
235
+ {
236
+ UpFirDn2DKernelParams<T> p = m_attribs;
237
+ cudaStream_t stream = ctx->eigen_device<Eigen::GpuDevice>().stream();
238
+
239
+ const Tensor& x = ctx->input(0); // [majorDim, inH, inW, minorDim]
240
+ const Tensor& k = ctx->input(1); // [kernelH, kernelW]
241
+ p.x = x.flat<T>().data();
242
+ p.k = k.flat<T>().data();
243
+ OP_REQUIRES(ctx, x.dims() == 4, errors::InvalidArgument("input must have rank 4"));
244
+ OP_REQUIRES(ctx, k.dims() == 2, errors::InvalidArgument("kernel must have rank 2"));
245
+ OP_REQUIRES(ctx, x.NumElements() <= kint32max, errors::InvalidArgument("input too large"));
246
+ OP_REQUIRES(ctx, k.NumElements() <= kint32max, errors::InvalidArgument("kernel too large"));
247
+
248
+ p.majorDim = (int)x.dim_size(0);
249
+ p.inH = (int)x.dim_size(1);
250
+ p.inW = (int)x.dim_size(2);
251
+ p.minorDim = (int)x.dim_size(3);
252
+ p.kernelH = (int)k.dim_size(0);
253
+ p.kernelW = (int)k.dim_size(1);
254
+ OP_REQUIRES(ctx, p.kernelW >= 1 && p.kernelH >= 1, errors::InvalidArgument("kernel must be at least 1x1"));
255
+
256
+ p.outW = (p.inW * p.upx + p.padx0 + p.padx1 - p.kernelW + p.downx) / p.downx;
257
+ p.outH = (p.inH * p.upy + p.pady0 + p.pady1 - p.kernelH + p.downy) / p.downy;
258
+ OP_REQUIRES(ctx, p.outW >= 1 && p.outH >= 1, errors::InvalidArgument("output must be at least 1x1"));
259
+
260
+ Tensor* y = NULL; // [majorDim, outH, outW, minorDim]
261
+ TensorShape ys;
262
+ ys.AddDim(p.majorDim);
263
+ ys.AddDim(p.outH);
264
+ ys.AddDim(p.outW);
265
+ ys.AddDim(p.minorDim);
266
+ OP_REQUIRES_OK(ctx, ctx->allocate_output(0, ys, &y));
267
+ p.y = y->flat<T>().data();
268
+ OP_REQUIRES(ctx, y->NumElements() <= kint32max, errors::InvalidArgument("output too large"));
269
+
270
+ // Choose CUDA kernel to use.
271
+ void* cudaKernel = (void*)UpFirDn2DKernel_large<T>;
272
+ int tileOutW = -1;
273
+ int tileOutH = -1;
274
+ if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 7 && p.kernelH <= 7) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 7,7, 64,16>; tileOutW = 64; tileOutH = 16; }
275
+ if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 6 && p.kernelH <= 6) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 6,6, 64,16>; tileOutW = 64; tileOutH = 16; }
276
+ if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 5 && p.kernelH <= 5) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 5,5, 64,16>; tileOutW = 64; tileOutH = 16; }
277
+ if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 4 && p.kernelH <= 4) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 4,4, 64,16>; tileOutW = 64; tileOutH = 16; }
278
+ if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 3 && p.kernelH <= 3) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 3,3, 64,16>; tileOutW = 64; tileOutH = 16; }
279
+ if (p.upx == 2 && p.upy == 2 && p.downx == 1 && p.downy == 1 && p.kernelW <= 8 && p.kernelH <= 8) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 2,2, 1,1, 8,8, 64,16>; tileOutW = 64; tileOutH = 16; }
280
+ if (p.upx == 2 && p.upy == 2 && p.downx == 1 && p.downy == 1 && p.kernelW <= 6 && p.kernelH <= 6) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 2,2, 1,1, 6,6, 64,16>; tileOutW = 64; tileOutH = 16; }
281
+ if (p.upx == 2 && p.upy == 2 && p.downx == 1 && p.downy == 1 && p.kernelW <= 4 && p.kernelH <= 4) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 2,2, 1,1, 4,4, 64,16>; tileOutW = 64; tileOutH = 16; }
282
+ if (p.upx == 2 && p.upy == 2 && p.downx == 1 && p.downy == 1 && p.kernelW <= 2 && p.kernelH <= 2) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 2,2, 1,1, 2,2, 64,16>; tileOutW = 64; tileOutH = 16; }
283
+ if (p.upx == 1 && p.upy == 1 && p.downx == 2 && p.downy == 2 && p.kernelW <= 8 && p.kernelH <= 8) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 2,2, 8,8, 32,8>; tileOutW = 32; tileOutH = 8; }
284
+ if (p.upx == 1 && p.upy == 1 && p.downx == 2 && p.downy == 2 && p.kernelW <= 6 && p.kernelH <= 6) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 2,2, 6,6, 32,8>; tileOutW = 32; tileOutH = 8; }
285
+ if (p.upx == 1 && p.upy == 1 && p.downx == 2 && p.downy == 2 && p.kernelW <= 4 && p.kernelH <= 4) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 2,2, 4,4, 32,8>; tileOutW = 32; tileOutH = 8; }
286
+ if (p.upx == 1 && p.upy == 1 && p.downx == 2 && p.downy == 2 && p.kernelW <= 2 && p.kernelH <= 2) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 2,2, 2,2, 32,8>; tileOutW = 32; tileOutH = 8; }
287
+
288
+ // Choose launch params.
289
+ dim3 blockSize;
290
+ dim3 gridSize;
291
+ if (tileOutW > 0 && tileOutH > 0) // small
292
+ {
293
+ p.loopMajor = (p.majorDim - 1) / 16384 + 1;
294
+ p.loopX = 1;
295
+ blockSize = dim3(32 * 8, 1, 1);
296
+ gridSize = dim3(((p.outH - 1) / tileOutH + 1) * p.minorDim, (p.outW - 1) / (p.loopX * tileOutW) + 1, (p.majorDim - 1) / p.loopMajor + 1);
297
+ }
298
+ else // large
299
+ {
300
+ p.loopMajor = (p.majorDim - 1) / 16384 + 1;
301
+ p.loopX = 4;
302
+ blockSize = dim3(4, 32, 1);
303
+ gridSize = dim3((p.outH * p.minorDim - 1) / blockSize.x + 1, (p.outW - 1) / (p.loopX * blockSize.y) + 1, (p.majorDim - 1) / p.loopMajor + 1);
304
+ }
305
+
306
+ // Launch CUDA kernel.
307
+ void* args[] = {&p};
308
+ OP_CHECK_CUDA_ERROR(ctx, cudaLaunchKernel(cudaKernel, gridSize, blockSize, args, 0, stream));
309
+ }
310
+ };
311
+
312
+ REGISTER_OP("UpFirDn2D")
313
+ .Input ("x: T")
314
+ .Input ("k: T")
315
+ .Output ("y: T")
316
+ .Attr ("T: {float, half}")
317
+ .Attr ("upx: int = 1")
318
+ .Attr ("upy: int = 1")
319
+ .Attr ("downx: int = 1")
320
+ .Attr ("downy: int = 1")
321
+ .Attr ("padx0: int = 0")
322
+ .Attr ("padx1: int = 0")
323
+ .Attr ("pady0: int = 0")
324
+ .Attr ("pady1: int = 0");
325
+ REGISTER_KERNEL_BUILDER(Name("UpFirDn2D").Device(DEVICE_GPU).TypeConstraint<float>("T"), UpFirDn2DOp<float>);
326
+ REGISTER_KERNEL_BUILDER(Name("UpFirDn2D").Device(DEVICE_GPU).TypeConstraint<Eigen::half>("T"), UpFirDn2DOp<Eigen::half>);
327
+
328
+ //------------------------------------------------------------------------
dnnlib/tflib/ops/upfirdn_2d.py ADDED
@@ -0,0 +1,366 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) SenseTime Research. All rights reserved.
2
+
3
+ # Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
4
+ #
5
+ # This work is made available under the Nvidia Source Code License-NC.
6
+ # To view a copy of this license, visit
7
+ # https://nvlabs.github.io/stylegan2/license.html
8
+
9
+ """Custom TensorFlow ops for efficient resampling of 2D images."""
10
+
11
+ import os
12
+ import numpy as np
13
+ import tensorflow as tf
14
+ from .. import custom_ops
15
+
16
+ def _get_plugin():
17
+ return custom_ops.get_plugin(os.path.splitext(__file__)[0] + '.cu')
18
+
19
+ #----------------------------------------------------------------------------
20
+
21
+ def upfirdn_2d(x, k, upx=1, upy=1, downx=1, downy=1, padx0=0, padx1=0, pady0=0, pady1=0, impl='cuda'):
22
+ r"""Pad, upsample, FIR filter, and downsample a batch of 2D images.
23
+
24
+ Accepts a batch of 2D images of the shape `[majorDim, inH, inW, minorDim]`
25
+ and performs the following operations for each image, batched across
26
+ `majorDim` and `minorDim`:
27
+
28
+ 1. Pad the image with zeros by the specified number of pixels on each side
29
+ (`padx0`, `padx1`, `pady0`, `pady1`). Specifying a negative value
30
+ corresponds to cropping the image.
31
+
32
+ 2. Upsample the image by inserting the zeros after each pixel (`upx`, `upy`).
33
+
34
+ 3. Convolve the image with the specified 2D FIR filter (`k`), shrinking the
35
+ image so that the footprint of all output pixels lies within the input image.
36
+
37
+ 4. Downsample the image by throwing away pixels (`downx`, `downy`).
38
+
39
+ This sequence of operations bears close resemblance to scipy.signal.upfirdn().
40
+ The fused op is considerably more efficient than performing the same calculation
41
+ using standard TensorFlow ops. It supports gradients of arbitrary order.
42
+
43
+ Args:
44
+ x: Input tensor of the shape `[majorDim, inH, inW, minorDim]`.
45
+ k: 2D FIR filter of the shape `[firH, firW]`.
46
+ upx: Integer upsampling factor along the X-axis (default: 1).
47
+ upy: Integer upsampling factor along the Y-axis (default: 1).
48
+ downx: Integer downsampling factor along the X-axis (default: 1).
49
+ downy: Integer downsampling factor along the Y-axis (default: 1).
50
+ padx0: Number of pixels to pad on the left side (default: 0).
51
+ padx1: Number of pixels to pad on the right side (default: 0).
52
+ pady0: Number of pixels to pad on the top side (default: 0).
53
+ pady1: Number of pixels to pad on the bottom side (default: 0).
54
+ impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
55
+
56
+ Returns:
57
+ Tensor of the shape `[majorDim, outH, outW, minorDim]`, and same datatype as `x`.
58
+ """
59
+
60
+ impl_dict = {
61
+ 'ref': _upfirdn_2d_ref,
62
+ 'cuda': _upfirdn_2d_cuda,
63
+ }
64
+ return impl_dict[impl](x=x, k=k, upx=upx, upy=upy, downx=downx, downy=downy, padx0=padx0, padx1=padx1, pady0=pady0, pady1=pady1)
65
+
66
+ #----------------------------------------------------------------------------
67
+
68
+ def _upfirdn_2d_ref(x, k, upx, upy, downx, downy, padx0, padx1, pady0, pady1):
69
+ """Slow reference implementation of `upfirdn_2d()` using standard TensorFlow ops."""
70
+
71
+ x = tf.convert_to_tensor(x)
72
+ k = np.asarray(k, dtype=np.float32)
73
+ assert x.shape.rank == 4
74
+ inH = x.shape[1].value
75
+ inW = x.shape[2].value
76
+ minorDim = _shape(x, 3)
77
+ kernelH, kernelW = k.shape
78
+ assert inW >= 1 and inH >= 1
79
+ assert kernelW >= 1 and kernelH >= 1
80
+ assert isinstance(upx, int) and isinstance(upy, int)
81
+ assert isinstance(downx, int) and isinstance(downy, int)
82
+ assert isinstance(padx0, int) and isinstance(padx1, int)
83
+ assert isinstance(pady0, int) and isinstance(pady1, int)
84
+
85
+ # Upsample (insert zeros).
86
+ x = tf.reshape(x, [-1, inH, 1, inW, 1, minorDim])
87
+ x = tf.pad(x, [[0, 0], [0, 0], [0, upy - 1], [0, 0], [0, upx - 1], [0, 0]])
88
+ x = tf.reshape(x, [-1, inH * upy, inW * upx, minorDim])
89
+
90
+ # Pad (crop if negative).
91
+ x = tf.pad(x, [[0, 0], [max(pady0, 0), max(pady1, 0)], [max(padx0, 0), max(padx1, 0)], [0, 0]])
92
+ x = x[:, max(-pady0, 0) : x.shape[1].value - max(-pady1, 0), max(-padx0, 0) : x.shape[2].value - max(-padx1, 0), :]
93
+
94
+ # Convolve with filter.
95
+ x = tf.transpose(x, [0, 3, 1, 2])
96
+ x = tf.reshape(x, [-1, 1, inH * upy + pady0 + pady1, inW * upx + padx0 + padx1])
97
+ w = tf.constant(k[::-1, ::-1, np.newaxis, np.newaxis], dtype=x.dtype)
98
+ x = tf.nn.conv2d(x, w, strides=[1,1,1,1], padding='VALID', data_format='NCHW')
99
+ x = tf.reshape(x, [-1, minorDim, inH * upy + pady0 + pady1 - kernelH + 1, inW * upx + padx0 + padx1 - kernelW + 1])
100
+ x = tf.transpose(x, [0, 2, 3, 1])
101
+
102
+ # Downsample (throw away pixels).
103
+ return x[:, ::downy, ::downx, :]
104
+
105
+ #----------------------------------------------------------------------------
106
+
107
+ def _upfirdn_2d_cuda(x, k, upx, upy, downx, downy, padx0, padx1, pady0, pady1):
108
+ """Fast CUDA implementation of `upfirdn_2d()` using custom ops."""
109
+
110
+ x = tf.convert_to_tensor(x)
111
+ k = np.asarray(k, dtype=np.float32)
112
+ majorDim, inH, inW, minorDim = x.shape.as_list()
113
+ kernelH, kernelW = k.shape
114
+ assert inW >= 1 and inH >= 1
115
+ assert kernelW >= 1 and kernelH >= 1
116
+ assert isinstance(upx, int) and isinstance(upy, int)
117
+ assert isinstance(downx, int) and isinstance(downy, int)
118
+ assert isinstance(padx0, int) and isinstance(padx1, int)
119
+ assert isinstance(pady0, int) and isinstance(pady1, int)
120
+
121
+ outW = (inW * upx + padx0 + padx1 - kernelW) // downx + 1
122
+ outH = (inH * upy + pady0 + pady1 - kernelH) // downy + 1
123
+ assert outW >= 1 and outH >= 1
124
+
125
+ kc = tf.constant(k, dtype=x.dtype)
126
+ gkc = tf.constant(k[::-1, ::-1], dtype=x.dtype)
127
+ gpadx0 = kernelW - padx0 - 1
128
+ gpady0 = kernelH - pady0 - 1
129
+ gpadx1 = inW * upx - outW * downx + padx0 - upx + 1
130
+ gpady1 = inH * upy - outH * downy + pady0 - upy + 1
131
+
132
+ @tf.custom_gradient
133
+ def func(x):
134
+ y = _get_plugin().up_fir_dn2d(x=x, k=kc, upx=upx, upy=upy, downx=downx, downy=downy, padx0=padx0, padx1=padx1, pady0=pady0, pady1=pady1)
135
+ y.set_shape([majorDim, outH, outW, minorDim])
136
+ @tf.custom_gradient
137
+ def grad(dy):
138
+ dx = _get_plugin().up_fir_dn2d(x=dy, k=gkc, upx=downx, upy=downy, downx=upx, downy=upy, padx0=gpadx0, padx1=gpadx1, pady0=gpady0, pady1=gpady1)
139
+ dx.set_shape([majorDim, inH, inW, minorDim])
140
+ return dx, func
141
+ return y, grad
142
+ return func(x)
143
+
144
+ #----------------------------------------------------------------------------
145
+
146
+ def filter_2d(x, k, gain=1, data_format='NCHW', impl='cuda'):
147
+ r"""Filter a batch of 2D images with the given FIR filter.
148
+
149
+ Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]`
150
+ and filters each image with the given filter. The filter is normalized so that
151
+ if the input pixels are constant, they will be scaled by the specified `gain`.
152
+ Pixels outside the image are assumed to be zero.
153
+
154
+ Args:
155
+ x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
156
+ k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable).
157
+ gain: Scaling factor for signal magnitude (default: 1.0).
158
+ data_format: `'NCHW'` or `'NHWC'` (default: `'NCHW'`).
159
+ impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
160
+
161
+ Returns:
162
+ Tensor of the same shape and datatype as `x`.
163
+ """
164
+
165
+ k = _setup_kernel(k) * gain
166
+ p = k.shape[0] - 1
167
+ return _simple_upfirdn_2d(x, k, pad0=(p+1)//2, pad1=p//2, data_format=data_format, impl=impl)
168
+
169
+ #----------------------------------------------------------------------------
170
+
171
+ def upsample_2d(x, k=None, factor=2, gain=1, data_format='NCHW', impl='cuda'):
172
+ r"""Upsample a batch of 2D images with the given filter.
173
+
174
+ Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]`
175
+ and upsamples each image with the given filter. The filter is normalized so that
176
+ if the input pixels are constant, they will be scaled by the specified `gain`.
177
+ Pixels outside the image are assumed to be zero, and the filter is padded with
178
+ zeros so that its shape is a multiple of the upsampling factor.
179
+
180
+ Args:
181
+ x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
182
+ k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable).
183
+ The default is `[1] * factor`, which corresponds to nearest-neighbor
184
+ upsampling.
185
+ factor: Integer upsampling factor (default: 2).
186
+ gain: Scaling factor for signal magnitude (default: 1.0).
187
+ data_format: `'NCHW'` or `'NHWC'` (default: `'NCHW'`).
188
+ impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
189
+
190
+ Returns:
191
+ Tensor of the shape `[N, C, H * factor, W * factor]` or
192
+ `[N, H * factor, W * factor, C]`, and same datatype as `x`.
193
+ """
194
+
195
+ assert isinstance(factor, int) and factor >= 1
196
+ if k is None:
197
+ k = [1] * factor
198
+ k = _setup_kernel(k) * (gain * (factor ** 2))
199
+ p = k.shape[0] - factor
200
+ return _simple_upfirdn_2d(x, k, up=factor, pad0=(p+1)//2+factor-1, pad1=p//2, data_format=data_format, impl=impl)
201
+
202
+ #----------------------------------------------------------------------------
203
+
204
+ def downsample_2d(x, k=None, factor=2, gain=1, data_format='NCHW', impl='cuda'):
205
+ r"""Downsample a batch of 2D images with the given filter.
206
+
207
+ Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]`
208
+ and downsamples each image with the given filter. The filter is normalized so that
209
+ if the input pixels are constant, they will be scaled by the specified `gain`.
210
+ Pixels outside the image are assumed to be zero, and the filter is padded with
211
+ zeros so that its shape is a multiple of the downsampling factor.
212
+
213
+ Args:
214
+ x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
215
+ k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable).
216
+ The default is `[1] * factor`, which corresponds to average pooling.
217
+ factor: Integer downsampling factor (default: 2).
218
+ gain: Scaling factor for signal magnitude (default: 1.0).
219
+ data_format: `'NCHW'` or `'NHWC'` (default: `'NCHW'`).
220
+ impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
221
+
222
+ Returns:
223
+ Tensor of the shape `[N, C, H // factor, W // factor]` or
224
+ `[N, H // factor, W // factor, C]`, and same datatype as `x`.
225
+ """
226
+
227
+ assert isinstance(factor, int) and factor >= 1
228
+ if k is None:
229
+ k = [1] * factor
230
+ k = _setup_kernel(k) * gain
231
+ p = k.shape[0] - factor
232
+ return _simple_upfirdn_2d(x, k, down=factor, pad0=(p+1)//2, pad1=p//2, data_format=data_format, impl=impl)
233
+
234
+ #----------------------------------------------------------------------------
235
+
236
+ def upsample_conv_2d(x, w, k=None, factor=2, gain=1, data_format='NCHW', impl='cuda'):
237
+ r"""Fused `upsample_2d()` followed by `tf.nn.conv2d()`.
238
+
239
+ Padding is performed only once at the beginning, not between the operations.
240
+ The fused op is considerably more efficient than performing the same calculation
241
+ using standard TensorFlow ops. It supports gradients of arbitrary order.
242
+
243
+ Args:
244
+ x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
245
+ w: Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`.
246
+ Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`.
247
+ k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable).
248
+ The default is `[1] * factor`, which corresponds to nearest-neighbor
249
+ upsampling.
250
+ factor: Integer upsampling factor (default: 2).
251
+ gain: Scaling factor for signal magnitude (default: 1.0).
252
+ data_format: `'NCHW'` or `'NHWC'` (default: `'NCHW'`).
253
+ impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
254
+
255
+ Returns:
256
+ Tensor of the shape `[N, C, H * factor, W * factor]` or
257
+ `[N, H * factor, W * factor, C]`, and same datatype as `x`.
258
+ """
259
+
260
+ assert isinstance(factor, int) and factor >= 1
261
+
262
+ # Check weight shape.
263
+ w = tf.convert_to_tensor(w)
264
+ assert w.shape.rank == 4
265
+ convH = w.shape[0].value
266
+ convW = w.shape[1].value
267
+ inC = _shape(w, 2)
268
+ outC = _shape(w, 3)
269
+ assert convW == convH
270
+
271
+ # Setup filter kernel.
272
+ if k is None:
273
+ k = [1] * factor
274
+ k = _setup_kernel(k) * (gain * (factor ** 2))
275
+ p = (k.shape[0] - factor) - (convW - 1)
276
+
277
+ # Determine data dimensions.
278
+ if data_format == 'NCHW':
279
+ stride = [1, 1, factor, factor]
280
+ output_shape = [_shape(x, 0), outC, (_shape(x, 2) - 1) * factor + convH, (_shape(x, 3) - 1) * factor + convW]
281
+ num_groups = _shape(x, 1) // inC
282
+ else:
283
+ stride = [1, factor, factor, 1]
284
+ output_shape = [_shape(x, 0), (_shape(x, 1) - 1) * factor + convH, (_shape(x, 2) - 1) * factor + convW, outC]
285
+ num_groups = _shape(x, 3) // inC
286
+
287
+ # Transpose weights.
288
+ w = tf.reshape(w, [convH, convW, inC, num_groups, -1])
289
+ w = tf.transpose(w[::-1, ::-1], [0, 1, 4, 3, 2])
290
+ w = tf.reshape(w, [convH, convW, -1, num_groups * inC])
291
+
292
+ # Execute.
293
+ x = tf.nn.conv2d_transpose(x, w, output_shape=output_shape, strides=stride, padding='VALID', data_format=data_format)
294
+ return _simple_upfirdn_2d(x, k, pad0=(p+1)//2+factor-1, pad1=p//2+1, data_format=data_format, impl=impl)
295
+
296
+ #----------------------------------------------------------------------------
297
+
298
+ def conv_downsample_2d(x, w, k=None, factor=2, gain=1, data_format='NCHW', impl='cuda'):
299
+ r"""Fused `tf.nn.conv2d()` followed by `downsample_2d()`.
300
+
301
+ Padding is performed only once at the beginning, not between the operations.
302
+ The fused op is considerably more efficient than performing the same calculation
303
+ using standard TensorFlow ops. It supports gradients of arbitrary order.
304
+
305
+ Args:
306
+ x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
307
+ w: Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`.
308
+ Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`.
309
+ k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable).
310
+ The default is `[1] * factor`, which corresponds to average pooling.
311
+ factor: Integer downsampling factor (default: 2).
312
+ gain: Scaling factor for signal magnitude (default: 1.0).
313
+ data_format: `'NCHW'` or `'NHWC'` (default: `'NCHW'`).
314
+ impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
315
+
316
+ Returns:
317
+ Tensor of the shape `[N, C, H // factor, W // factor]` or
318
+ `[N, H // factor, W // factor, C]`, and same datatype as `x`.
319
+ """
320
+
321
+ assert isinstance(factor, int) and factor >= 1
322
+ w = tf.convert_to_tensor(w)
323
+ convH, convW, _inC, _outC = w.shape.as_list()
324
+ assert convW == convH
325
+ if k is None:
326
+ k = [1] * factor
327
+ k = _setup_kernel(k) * gain
328
+ p = (k.shape[0] - factor) + (convW - 1)
329
+ if data_format == 'NCHW':
330
+ s = [1, 1, factor, factor]
331
+ else:
332
+ s = [1, factor, factor, 1]
333
+ x = _simple_upfirdn_2d(x, k, pad0=(p+1)//2, pad1=p//2, data_format=data_format, impl=impl)
334
+ return tf.nn.conv2d(x, w, strides=s, padding='VALID', data_format=data_format)
335
+
336
+ #----------------------------------------------------------------------------
337
+ # Internal helper funcs.
338
+
339
+ def _shape(tf_expr, dim_idx):
340
+ if tf_expr.shape.rank is not None:
341
+ dim = tf_expr.shape[dim_idx].value
342
+ if dim is not None:
343
+ return dim
344
+ return tf.shape(tf_expr)[dim_idx]
345
+
346
+ def _setup_kernel(k):
347
+ k = np.asarray(k, dtype=np.float32)
348
+ if k.ndim == 1:
349
+ k = np.outer(k, k)
350
+ k /= np.sum(k)
351
+ assert k.ndim == 2
352
+ assert k.shape[0] == k.shape[1]
353
+ return k
354
+
355
+ def _simple_upfirdn_2d(x, k, up=1, down=1, pad0=0, pad1=0, data_format='NCHW', impl='cuda'):
356
+ assert data_format in ['NCHW', 'NHWC']
357
+ assert x.shape.rank == 4
358
+ y = x
359
+ if data_format == 'NCHW':
360
+ y = tf.reshape(y, [-1, _shape(y, 2), _shape(y, 3), 1])
361
+ y = upfirdn_2d(y, k, upx=up, upy=up, downx=down, downy=down, padx0=pad0, padx1=pad1, pady0=pad0, pady1=pad1, impl=impl)
362
+ if data_format == 'NCHW':
363
+ y = tf.reshape(y, [-1, _shape(x, 1), _shape(y, 1), _shape(y, 2)])
364
+ return y
365
+
366
+ #----------------------------------------------------------------------------
dnnlib/tflib/optimizer.py ADDED
@@ -0,0 +1,338 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) SenseTime Research. All rights reserved.
2
+
3
+ # Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
4
+ #
5
+ # This work is made available under the Nvidia Source Code License-NC.
6
+ # To view a copy of this license, visit
7
+ # https://nvlabs.github.io/stylegan2/license.html
8
+
9
+ """Helper wrapper for a Tensorflow optimizer."""
10
+
11
+ import numpy as np
12
+ import tensorflow as tf
13
+
14
+ from collections import OrderedDict
15
+ from typing import List, Union
16
+
17
+ from . import autosummary
18
+ from . import tfutil
19
+ from .. import util
20
+
21
+ from .tfutil import TfExpression, TfExpressionEx
22
+
23
+ try:
24
+ # TensorFlow 1.13
25
+ from tensorflow.python.ops import nccl_ops
26
+ except:
27
+ # Older TensorFlow versions
28
+ import tensorflow.contrib.nccl as nccl_ops
29
+
30
+ class Optimizer:
31
+ """A Wrapper for tf.train.Optimizer.
32
+
33
+ Automatically takes care of:
34
+ - Gradient averaging for multi-GPU training.
35
+ - Gradient accumulation for arbitrarily large minibatches.
36
+ - Dynamic loss scaling and typecasts for FP16 training.
37
+ - Ignoring corrupted gradients that contain NaNs/Infs.
38
+ - Reporting statistics.
39
+ - Well-chosen default settings.
40
+ """
41
+
42
+ def __init__(self,
43
+ name: str = "Train", # Name string that will appear in TensorFlow graph.
44
+ tf_optimizer: str = "tf.train.AdamOptimizer", # Underlying optimizer class.
45
+ learning_rate: TfExpressionEx = 0.001, # Learning rate. Can vary over time.
46
+ minibatch_multiplier: TfExpressionEx = None, # Treat N consecutive minibatches as one by accumulating gradients.
47
+ share: "Optimizer" = None, # Share internal state with a previously created optimizer?
48
+ use_loss_scaling: bool = False, # Enable dynamic loss scaling for robust mixed-precision training?
49
+ loss_scaling_init: float = 64.0, # Log2 of initial loss scaling factor.
50
+ loss_scaling_inc: float = 0.0005, # Log2 of per-minibatch loss scaling increment when there is no overflow.
51
+ loss_scaling_dec: float = 1.0, # Log2 of per-minibatch loss scaling decrement when there is an overflow.
52
+ report_mem_usage: bool = False, # Report fine-grained memory usage statistics in TensorBoard?
53
+ **kwargs):
54
+
55
+ # Public fields.
56
+ self.name = name
57
+ self.learning_rate = learning_rate
58
+ self.minibatch_multiplier = minibatch_multiplier
59
+ self.id = self.name.replace("/", ".")
60
+ self.scope = tf.get_default_graph().unique_name(self.id)
61
+ self.optimizer_class = util.get_obj_by_name(tf_optimizer)
62
+ self.optimizer_kwargs = dict(kwargs)
63
+ self.use_loss_scaling = use_loss_scaling
64
+ self.loss_scaling_init = loss_scaling_init
65
+ self.loss_scaling_inc = loss_scaling_inc
66
+ self.loss_scaling_dec = loss_scaling_dec
67
+
68
+ # Private fields.
69
+ self._updates_applied = False
70
+ self._devices = OrderedDict() # device_name => EasyDict()
71
+ self._shared_optimizers = OrderedDict() # device_name => optimizer_class
72
+ self._gradient_shapes = None # [shape, ...]
73
+ self._report_mem_usage = report_mem_usage
74
+
75
+ # Validate arguments.
76
+ assert callable(self.optimizer_class)
77
+
78
+ # Share internal state if requested.
79
+ if share is not None:
80
+ assert isinstance(share, Optimizer)
81
+ assert self.optimizer_class is share.optimizer_class
82
+ assert self.learning_rate is share.learning_rate
83
+ assert self.optimizer_kwargs == share.optimizer_kwargs
84
+ self._shared_optimizers = share._shared_optimizers # pylint: disable=protected-access
85
+
86
+ def _get_device(self, device_name: str):
87
+ """Get internal state for the given TensorFlow device."""
88
+ tfutil.assert_tf_initialized()
89
+ if device_name in self._devices:
90
+ return self._devices[device_name]
91
+
92
+ # Initialize fields.
93
+ device = util.EasyDict()
94
+ device.name = device_name
95
+ device.optimizer = None # Underlying optimizer: optimizer_class
96
+ device.loss_scaling_var = None # Log2 of loss scaling: tf.Variable
97
+ device.grad_raw = OrderedDict() # Raw gradients: var => [grad, ...]
98
+ device.grad_clean = OrderedDict() # Clean gradients: var => grad
99
+ device.grad_acc_vars = OrderedDict() # Accumulation sums: var => tf.Variable
100
+ device.grad_acc_count = None # Accumulation counter: tf.Variable
101
+ device.grad_acc = OrderedDict() # Accumulated gradients: var => grad
102
+
103
+ # Setup TensorFlow objects.
104
+ with tfutil.absolute_name_scope(self.scope + "/Devices"), tf.device(device_name), tf.control_dependencies(None):
105
+ if device_name not in self._shared_optimizers:
106
+ optimizer_name = self.scope.replace("/", "_") + "_opt%d" % len(self._shared_optimizers)
107
+ self._shared_optimizers[device_name] = self.optimizer_class(name=optimizer_name, learning_rate=self.learning_rate, **self.optimizer_kwargs)
108
+ device.optimizer = self._shared_optimizers[device_name]
109
+ if self.use_loss_scaling:
110
+ device.loss_scaling_var = tf.Variable(np.float32(self.loss_scaling_init), trainable=False, name="loss_scaling_var")
111
+
112
+ # Register device.
113
+ self._devices[device_name] = device
114
+ return device
115
+
116
+ def register_gradients(self, loss: TfExpression, trainable_vars: Union[List, dict]) -> None:
117
+ """Register the gradients of the given loss function with respect to the given variables.
118
+ Intended to be called once per GPU."""
119
+ tfutil.assert_tf_initialized()
120
+ assert not self._updates_applied
121
+ device = self._get_device(loss.device)
122
+
123
+ # Validate trainables.
124
+ if isinstance(trainable_vars, dict):
125
+ trainable_vars = list(trainable_vars.values()) # allow passing in Network.trainables as vars
126
+ assert isinstance(trainable_vars, list) and len(trainable_vars) >= 1
127
+ assert all(tfutil.is_tf_expression(expr) for expr in trainable_vars + [loss])
128
+ assert all(var.device == device.name for var in trainable_vars)
129
+
130
+ # Validate shapes.
131
+ if self._gradient_shapes is None:
132
+ self._gradient_shapes = [var.shape.as_list() for var in trainable_vars]
133
+ assert len(trainable_vars) == len(self._gradient_shapes)
134
+ assert all(var.shape.as_list() == var_shape for var, var_shape in zip(trainable_vars, self._gradient_shapes))
135
+
136
+ # Report memory usage if requested.
137
+ deps = []
138
+ if self._report_mem_usage:
139
+ self._report_mem_usage = False
140
+ try:
141
+ with tf.name_scope(self.id + '_mem'), tf.device(device.name), tf.control_dependencies([loss]):
142
+ deps.append(autosummary.autosummary(self.id + "/mem_usage_gb", tf.contrib.memory_stats.BytesInUse() / 2**30))
143
+ except tf.errors.NotFoundError:
144
+ pass
145
+
146
+ # Compute gradients.
147
+ with tf.name_scope(self.id + "_grad"), tf.device(device.name), tf.control_dependencies(deps):
148
+ loss = self.apply_loss_scaling(tf.cast(loss, tf.float32))
149
+ gate = tf.train.Optimizer.GATE_NONE # disable gating to reduce memory usage
150
+ grad_list = device.optimizer.compute_gradients(loss=loss, var_list=trainable_vars, gate_gradients=gate)
151
+
152
+ # Register gradients.
153
+ for grad, var in grad_list:
154
+ if var not in device.grad_raw:
155
+ device.grad_raw[var] = []
156
+ device.grad_raw[var].append(grad)
157
+
158
+ def apply_updates(self, allow_no_op: bool = False) -> tf.Operation:
159
+ """Construct training op to update the registered variables based on their gradients."""
160
+ tfutil.assert_tf_initialized()
161
+ assert not self._updates_applied
162
+ self._updates_applied = True
163
+ all_ops = []
164
+
165
+ # Check for no-op.
166
+ if allow_no_op and len(self._devices) == 0:
167
+ with tfutil.absolute_name_scope(self.scope):
168
+ return tf.no_op(name='TrainingOp')
169
+
170
+ # Clean up gradients.
171
+ for device_idx, device in enumerate(self._devices.values()):
172
+ with tfutil.absolute_name_scope(self.scope + "/Clean%d" % device_idx), tf.device(device.name):
173
+ for var, grad in device.grad_raw.items():
174
+
175
+ # Filter out disconnected gradients and convert to float32.
176
+ grad = [g for g in grad if g is not None]
177
+ grad = [tf.cast(g, tf.float32) for g in grad]
178
+
179
+ # Sum within the device.
180
+ if len(grad) == 0:
181
+ grad = tf.zeros(var.shape) # No gradients => zero.
182
+ elif len(grad) == 1:
183
+ grad = grad[0] # Single gradient => use as is.
184
+ else:
185
+ grad = tf.add_n(grad) # Multiple gradients => sum.
186
+
187
+ # Scale as needed.
188
+ scale = 1.0 / len(device.grad_raw[var]) / len(self._devices)
189
+ scale = tf.constant(scale, dtype=tf.float32, name="scale")
190
+ if self.minibatch_multiplier is not None:
191
+ scale /= tf.cast(self.minibatch_multiplier, tf.float32)
192
+ scale = self.undo_loss_scaling(scale)
193
+ device.grad_clean[var] = grad * scale
194
+
195
+ # Sum gradients across devices.
196
+ if len(self._devices) > 1:
197
+ with tfutil.absolute_name_scope(self.scope + "/Broadcast"), tf.device(None):
198
+ for all_vars in zip(*[device.grad_clean.keys() for device in self._devices.values()]):
199
+ if len(all_vars) > 0 and all(dim > 0 for dim in all_vars[0].shape.as_list()): # NCCL does not support zero-sized tensors.
200
+ all_grads = [device.grad_clean[var] for device, var in zip(self._devices.values(), all_vars)]
201
+ all_grads = nccl_ops.all_sum(all_grads)
202
+ for device, var, grad in zip(self._devices.values(), all_vars, all_grads):
203
+ device.grad_clean[var] = grad
204
+
205
+ # Apply updates separately on each device.
206
+ for device_idx, device in enumerate(self._devices.values()):
207
+ with tfutil.absolute_name_scope(self.scope + "/Apply%d" % device_idx), tf.device(device.name):
208
+ # pylint: disable=cell-var-from-loop
209
+
210
+ # Accumulate gradients over time.
211
+ if self.minibatch_multiplier is None:
212
+ acc_ok = tf.constant(True, name='acc_ok')
213
+ device.grad_acc = OrderedDict(device.grad_clean)
214
+ else:
215
+ # Create variables.
216
+ with tf.control_dependencies(None):
217
+ for var in device.grad_clean.keys():
218
+ device.grad_acc_vars[var] = tf.Variable(tf.zeros(var.shape), trainable=False, name="grad_acc_var")
219
+ device.grad_acc_count = tf.Variable(tf.zeros([]), trainable=False, name="grad_acc_count")
220
+
221
+ # Track counter.
222
+ count_cur = device.grad_acc_count + 1.0
223
+ count_inc_op = lambda: tf.assign(device.grad_acc_count, count_cur)
224
+ count_reset_op = lambda: tf.assign(device.grad_acc_count, tf.zeros([]))
225
+ acc_ok = (count_cur >= tf.cast(self.minibatch_multiplier, tf.float32))
226
+ all_ops.append(tf.cond(acc_ok, count_reset_op, count_inc_op))
227
+
228
+ # Track gradients.
229
+ for var, grad in device.grad_clean.items():
230
+ acc_var = device.grad_acc_vars[var]
231
+ acc_cur = acc_var + grad
232
+ device.grad_acc[var] = acc_cur
233
+ with tf.control_dependencies([acc_cur]):
234
+ acc_inc_op = lambda: tf.assign(acc_var, acc_cur)
235
+ acc_reset_op = lambda: tf.assign(acc_var, tf.zeros(var.shape))
236
+ all_ops.append(tf.cond(acc_ok, acc_reset_op, acc_inc_op))
237
+
238
+ # No overflow => apply gradients.
239
+ all_ok = tf.reduce_all(tf.stack([acc_ok] + [tf.reduce_all(tf.is_finite(g)) for g in device.grad_acc.values()]))
240
+ apply_op = lambda: device.optimizer.apply_gradients([(tf.cast(grad, var.dtype), var) for var, grad in device.grad_acc.items()])
241
+ all_ops.append(tf.cond(all_ok, apply_op, tf.no_op))
242
+
243
+ # Adjust loss scaling.
244
+ if self.use_loss_scaling:
245
+ ls_inc_op = lambda: tf.assign_add(device.loss_scaling_var, self.loss_scaling_inc)
246
+ ls_dec_op = lambda: tf.assign_sub(device.loss_scaling_var, self.loss_scaling_dec)
247
+ ls_update_op = lambda: tf.group(tf.cond(all_ok, ls_inc_op, ls_dec_op))
248
+ all_ops.append(tf.cond(acc_ok, ls_update_op, tf.no_op))
249
+
250
+ # Last device => report statistics.
251
+ if device_idx == len(self._devices) - 1:
252
+ all_ops.append(autosummary.autosummary(self.id + "/learning_rate", self.learning_rate))
253
+ all_ops.append(autosummary.autosummary(self.id + "/overflow_frequency", tf.where(all_ok, 0, 1), condition=acc_ok))
254
+ if self.use_loss_scaling:
255
+ all_ops.append(autosummary.autosummary(self.id + "/loss_scaling_log2", device.loss_scaling_var))
256
+
257
+ # Initialize variables.
258
+ self.reset_optimizer_state()
259
+ if self.use_loss_scaling:
260
+ tfutil.init_uninitialized_vars([device.loss_scaling_var for device in self._devices.values()])
261
+ if self.minibatch_multiplier is not None:
262
+ tfutil.run([var.initializer for device in self._devices.values() for var in list(device.grad_acc_vars.values()) + [device.grad_acc_count]])
263
+
264
+ # Group everything into a single op.
265
+ with tfutil.absolute_name_scope(self.scope):
266
+ return tf.group(*all_ops, name="TrainingOp")
267
+
268
+ def reset_optimizer_state(self) -> None:
269
+ """Reset internal state of the underlying optimizer."""
270
+ tfutil.assert_tf_initialized()
271
+ tfutil.run([var.initializer for device in self._devices.values() for var in device.optimizer.variables()])
272
+
273
+ def get_loss_scaling_var(self, device: str) -> Union[tf.Variable, None]:
274
+ """Get or create variable representing log2 of the current dynamic loss scaling factor."""
275
+ return self._get_device(device).loss_scaling_var
276
+
277
+ def apply_loss_scaling(self, value: TfExpression) -> TfExpression:
278
+ """Apply dynamic loss scaling for the given expression."""
279
+ assert tfutil.is_tf_expression(value)
280
+ if not self.use_loss_scaling:
281
+ return value
282
+ return value * tfutil.exp2(self.get_loss_scaling_var(value.device))
283
+
284
+ def undo_loss_scaling(self, value: TfExpression) -> TfExpression:
285
+ """Undo the effect of dynamic loss scaling for the given expression."""
286
+ assert tfutil.is_tf_expression(value)
287
+ if not self.use_loss_scaling:
288
+ return value
289
+ return value * tfutil.exp2(-self.get_loss_scaling_var(value.device)) # pylint: disable=invalid-unary-operand-type
290
+
291
+
292
+ class SimpleAdam:
293
+ """Simplified version of tf.train.AdamOptimizer that behaves identically when used with dnnlib.tflib.Optimizer."""
294
+
295
+ def __init__(self, name="Adam", learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8):
296
+ self.name = name
297
+ self.learning_rate = learning_rate
298
+ self.beta1 = beta1
299
+ self.beta2 = beta2
300
+ self.epsilon = epsilon
301
+ self.all_state_vars = []
302
+
303
+ def variables(self):
304
+ return self.all_state_vars
305
+
306
+ def compute_gradients(self, loss, var_list, gate_gradients=tf.train.Optimizer.GATE_NONE):
307
+ assert gate_gradients == tf.train.Optimizer.GATE_NONE
308
+ return list(zip(tf.gradients(loss, var_list), var_list))
309
+
310
+ def apply_gradients(self, grads_and_vars):
311
+ with tf.name_scope(self.name):
312
+ state_vars = []
313
+ update_ops = []
314
+
315
+ # Adjust learning rate to deal with startup bias.
316
+ with tf.control_dependencies(None):
317
+ b1pow_var = tf.Variable(dtype=tf.float32, initial_value=1, trainable=False)
318
+ b2pow_var = tf.Variable(dtype=tf.float32, initial_value=1, trainable=False)
319
+ state_vars += [b1pow_var, b2pow_var]
320
+ b1pow_new = b1pow_var * self.beta1
321
+ b2pow_new = b2pow_var * self.beta2
322
+ update_ops += [tf.assign(b1pow_var, b1pow_new), tf.assign(b2pow_var, b2pow_new)]
323
+ lr_new = self.learning_rate * tf.sqrt(1 - b2pow_new) / (1 - b1pow_new)
324
+
325
+ # Construct ops to update each variable.
326
+ for grad, var in grads_and_vars:
327
+ with tf.control_dependencies(None):
328
+ m_var = tf.Variable(dtype=tf.float32, initial_value=tf.zeros_like(var), trainable=False)
329
+ v_var = tf.Variable(dtype=tf.float32, initial_value=tf.zeros_like(var), trainable=False)
330
+ state_vars += [m_var, v_var]
331
+ m_new = self.beta1 * m_var + (1 - self.beta1) * grad
332
+ v_new = self.beta2 * v_var + (1 - self.beta2) * tf.square(grad)
333
+ var_delta = lr_new * m_new / (tf.sqrt(v_new) + self.epsilon)
334
+ update_ops += [tf.assign(m_var, m_new), tf.assign(v_var, v_new), tf.assign_sub(var, var_delta)]
335
+
336
+ # Group everything together.
337
+ self.all_state_vars += state_vars
338
+ return tf.group(*update_ops)
dnnlib/tflib/tfutil.py ADDED
@@ -0,0 +1,254 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) SenseTime Research. All rights reserved.
2
+
3
+ # Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
4
+ #
5
+ # This work is made available under the Nvidia Source Code License-NC.
6
+ # To view a copy of this license, visit
7
+ # https://nvlabs.github.io/stylegan2/license.html
8
+
9
+ """Miscellaneous helper utils for Tensorflow."""
10
+
11
+ import os
12
+ import numpy as np
13
+ import tensorflow as tf
14
+
15
+ # Silence deprecation warnings from TensorFlow 1.13 onwards
16
+ import logging
17
+ logging.getLogger('tensorflow').setLevel(logging.ERROR)
18
+ import tensorflow.contrib # requires TensorFlow 1.x!
19
+ tf.contrib = tensorflow.contrib
20
+
21
+ from typing import Any, Iterable, List, Union
22
+
23
+ TfExpression = Union[tf.Tensor, tf.Variable, tf.Operation]
24
+ """A type that represents a valid Tensorflow expression."""
25
+
26
+ TfExpressionEx = Union[TfExpression, int, float, np.ndarray]
27
+ """A type that can be converted to a valid Tensorflow expression."""
28
+
29
+
30
+ def run(*args, **kwargs) -> Any:
31
+ """Run the specified ops in the default session."""
32
+ assert_tf_initialized()
33
+ return tf.get_default_session().run(*args, **kwargs)
34
+
35
+
36
+ def is_tf_expression(x: Any) -> bool:
37
+ """Check whether the input is a valid Tensorflow expression, i.e., Tensorflow Tensor, Variable, or Operation."""
38
+ return isinstance(x, (tf.Tensor, tf.Variable, tf.Operation))
39
+
40
+
41
+ def shape_to_list(shape: Iterable[tf.Dimension]) -> List[Union[int, None]]:
42
+ """Convert a Tensorflow shape to a list of ints. Retained for backwards compatibility -- use TensorShape.as_list() in new code."""
43
+ return [dim.value for dim in shape]
44
+
45
+
46
+ def flatten(x: TfExpressionEx) -> TfExpression:
47
+ """Shortcut function for flattening a tensor."""
48
+ with tf.name_scope("Flatten"):
49
+ return tf.reshape(x, [-1])
50
+
51
+
52
+ def log2(x: TfExpressionEx) -> TfExpression:
53
+ """Logarithm in base 2."""
54
+ with tf.name_scope("Log2"):
55
+ return tf.log(x) * np.float32(1.0 / np.log(2.0))
56
+
57
+
58
+ def exp2(x: TfExpressionEx) -> TfExpression:
59
+ """Exponent in base 2."""
60
+ with tf.name_scope("Exp2"):
61
+ return tf.exp(x * np.float32(np.log(2.0)))
62
+
63
+
64
+ def lerp(a: TfExpressionEx, b: TfExpressionEx, t: TfExpressionEx) -> TfExpressionEx:
65
+ """Linear interpolation."""
66
+ with tf.name_scope("Lerp"):
67
+ return a + (b - a) * t
68
+
69
+
70
+ def lerp_clip(a: TfExpressionEx, b: TfExpressionEx, t: TfExpressionEx) -> TfExpression:
71
+ """Linear interpolation with clip."""
72
+ with tf.name_scope("LerpClip"):
73
+ return a + (b - a) * tf.clip_by_value(t, 0.0, 1.0)
74
+
75
+
76
+ def absolute_name_scope(scope: str) -> tf.name_scope:
77
+ """Forcefully enter the specified name scope, ignoring any surrounding scopes."""
78
+ return tf.name_scope(scope + "/")
79
+
80
+
81
+ def absolute_variable_scope(scope: str, **kwargs) -> tf.variable_scope:
82
+ """Forcefully enter the specified variable scope, ignoring any surrounding scopes."""
83
+ return tf.variable_scope(tf.VariableScope(name=scope, **kwargs), auxiliary_name_scope=False)
84
+
85
+
86
+ def _sanitize_tf_config(config_dict: dict = None) -> dict:
87
+ # Defaults.
88
+ cfg = dict()
89
+ cfg["rnd.np_random_seed"] = None # Random seed for NumPy. None = keep as is.
90
+ cfg["rnd.tf_random_seed"] = "auto" # Random seed for TensorFlow. 'auto' = derive from NumPy random state. None = keep as is.
91
+ cfg["env.TF_CPP_MIN_LOG_LEVEL"] = "1" # 0 = Print all available debug info from TensorFlow. 1 = Print warnings and errors, but disable debug info.
92
+ cfg["graph_options.place_pruned_graph"] = True # False = Check that all ops are available on the designated device. True = Skip the check for ops that are not used.
93
+ cfg["gpu_options.allow_growth"] = True # False = Allocate all GPU memory at the beginning. True = Allocate only as much GPU memory as needed.
94
+
95
+ # Remove defaults for environment variables that are already set.
96
+ for key in list(cfg):
97
+ fields = key.split(".")
98
+ if fields[0] == "env":
99
+ assert len(fields) == 2
100
+ if fields[1] in os.environ:
101
+ del cfg[key]
102
+
103
+ # User overrides.
104
+ if config_dict is not None:
105
+ cfg.update(config_dict)
106
+ return cfg
107
+
108
+
109
+ def init_tf(config_dict: dict = None) -> None:
110
+ """Initialize TensorFlow session using good default settings."""
111
+ # Skip if already initialized.
112
+ if tf.get_default_session() is not None:
113
+ return
114
+
115
+ # Setup config dict and random seeds.
116
+ cfg = _sanitize_tf_config(config_dict)
117
+ np_random_seed = cfg["rnd.np_random_seed"]
118
+ if np_random_seed is not None:
119
+ np.random.seed(np_random_seed)
120
+ tf_random_seed = cfg["rnd.tf_random_seed"]
121
+ if tf_random_seed == "auto":
122
+ tf_random_seed = np.random.randint(1 << 31)
123
+ if tf_random_seed is not None:
124
+ tf.set_random_seed(tf_random_seed)
125
+
126
+ # Setup environment variables.
127
+ for key, value in cfg.items():
128
+ fields = key.split(".")
129
+ if fields[0] == "env":
130
+ assert len(fields) == 2
131
+ os.environ[fields[1]] = str(value)
132
+
133
+ # Create default TensorFlow session.
134
+ create_session(cfg, force_as_default=True)
135
+
136
+
137
+ def assert_tf_initialized():
138
+ """Check that TensorFlow session has been initialized."""
139
+ if tf.get_default_session() is None:
140
+ raise RuntimeError("No default TensorFlow session found. Please call dnnlib.tflib.init_tf().")
141
+
142
+
143
+ def create_session(config_dict: dict = None, force_as_default: bool = False) -> tf.Session:
144
+ """Create tf.Session based on config dict."""
145
+ # Setup TensorFlow config proto.
146
+ cfg = _sanitize_tf_config(config_dict)
147
+ config_proto = tf.ConfigProto()
148
+ for key, value in cfg.items():
149
+ fields = key.split(".")
150
+ if fields[0] not in ["rnd", "env"]:
151
+ obj = config_proto
152
+ for field in fields[:-1]:
153
+ obj = getattr(obj, field)
154
+ setattr(obj, fields[-1], value)
155
+
156
+ # Create session.
157
+ session = tf.Session(config=config_proto)
158
+ if force_as_default:
159
+ # pylint: disable=protected-access
160
+ session._default_session = session.as_default()
161
+ session._default_session.enforce_nesting = False
162
+ session._default_session.__enter__()
163
+ return session
164
+
165
+
166
+ def init_uninitialized_vars(target_vars: List[tf.Variable] = None) -> None:
167
+ """Initialize all tf.Variables that have not already been initialized.
168
+
169
+ Equivalent to the following, but more efficient and does not bloat the tf graph:
170
+ tf.variables_initializer(tf.report_uninitialized_variables()).run()
171
+ """
172
+ assert_tf_initialized()
173
+ if target_vars is None:
174
+ target_vars = tf.global_variables()
175
+
176
+ test_vars = []
177
+ test_ops = []
178
+
179
+ with tf.control_dependencies(None): # ignore surrounding control_dependencies
180
+ for var in target_vars:
181
+ assert is_tf_expression(var)
182
+
183
+ try:
184
+ tf.get_default_graph().get_tensor_by_name(var.name.replace(":0", "/IsVariableInitialized:0"))
185
+ except KeyError:
186
+ # Op does not exist => variable may be uninitialized.
187
+ test_vars.append(var)
188
+
189
+ with absolute_name_scope(var.name.split(":")[0]):
190
+ test_ops.append(tf.is_variable_initialized(var))
191
+
192
+ init_vars = [var for var, inited in zip(test_vars, run(test_ops)) if not inited]
193
+ run([var.initializer for var in init_vars])
194
+
195
+
196
+ def set_vars(var_to_value_dict: dict) -> None:
197
+ """Set the values of given tf.Variables.
198
+
199
+ Equivalent to the following, but more efficient and does not bloat the tf graph:
200
+ tflib.run([tf.assign(var, value) for var, value in var_to_value_dict.items()]
201
+ """
202
+ assert_tf_initialized()
203
+ ops = []
204
+ feed_dict = {}
205
+
206
+ for var, value in var_to_value_dict.items():
207
+ assert is_tf_expression(var)
208
+
209
+ try:
210
+ setter = tf.get_default_graph().get_tensor_by_name(var.name.replace(":0", "/setter:0")) # look for existing op
211
+ except KeyError:
212
+ with absolute_name_scope(var.name.split(":")[0]):
213
+ with tf.control_dependencies(None): # ignore surrounding control_dependencies
214
+ setter = tf.assign(var, tf.placeholder(var.dtype, var.shape, "new_value"), name="setter") # create new setter
215
+
216
+ ops.append(setter)
217
+ feed_dict[setter.op.inputs[1]] = value
218
+
219
+ run(ops, feed_dict)
220
+
221
+
222
+ def create_var_with_large_initial_value(initial_value: np.ndarray, *args, **kwargs):
223
+ """Create tf.Variable with large initial value without bloating the tf graph."""
224
+ assert_tf_initialized()
225
+ assert isinstance(initial_value, np.ndarray)
226
+ zeros = tf.zeros(initial_value.shape, initial_value.dtype)
227
+ var = tf.Variable(zeros, *args, **kwargs)
228
+ set_vars({var: initial_value})
229
+ return var
230
+
231
+
232
+ def convert_images_from_uint8(images, drange=[-1,1], nhwc_to_nchw=False):
233
+ """Convert a minibatch of images from uint8 to float32 with configurable dynamic range.
234
+ Can be used as an input transformation for Network.run().
235
+ """
236
+ images = tf.cast(images, tf.float32)
237
+ if nhwc_to_nchw:
238
+ images = tf.transpose(images, [0, 3, 1, 2])
239
+ return images * ((drange[1] - drange[0]) / 255) + drange[0]
240
+
241
+
242
+ def convert_images_to_uint8(images, drange=[-1,1], nchw_to_nhwc=False, shrink=1):
243
+ """Convert a minibatch of images from float32 to uint8 with configurable dynamic range.
244
+ Can be used as an output transformation for Network.run().
245
+ """
246
+ images = tf.cast(images, tf.float32)
247
+ if shrink > 1:
248
+ ksize = [1, 1, shrink, shrink]
249
+ images = tf.nn.avg_pool(images, ksize=ksize, strides=ksize, padding="VALID", data_format="NCHW")
250
+ if nchw_to_nhwc:
251
+ images = tf.transpose(images, [0, 2, 3, 1])
252
+ scale = 255 / (drange[1] - drange[0])
253
+ images = images * scale + (0.5 - drange[0] * scale)
254
+ return tf.saturate_cast(images, tf.uint8)
dnnlib/util.py ADDED
@@ -0,0 +1,479 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) SenseTime Research. All rights reserved.
2
+ # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
3
+ #
4
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
5
+ # and proprietary rights in and to this software, related documentation
6
+ # and any modifications thereto. Any use, reproduction, disclosure or
7
+ # distribution of this software and related documentation without an express
8
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
9
+
10
+ """Miscellaneous utility classes and functions."""
11
+
12
+ import ctypes
13
+ import fnmatch
14
+ import importlib
15
+ import inspect
16
+ import numpy as np
17
+ import os
18
+ import shutil
19
+ import sys
20
+ import types
21
+ import io
22
+ import pickle
23
+ import re
24
+ import requests
25
+ import html
26
+ import hashlib
27
+ import glob
28
+ import tempfile
29
+ import urllib
30
+ import urllib.request
31
+ import uuid
32
+
33
+ from distutils.util import strtobool
34
+ from typing import Any, List, Tuple, Union
35
+
36
+
37
+ # Util classes
38
+ # ------------------------------------------------------------------------------------------
39
+
40
+
41
+ class EasyDict(dict):
42
+ """Convenience class that behaves like a dict but allows access with the attribute syntax."""
43
+
44
+ def __getattr__(self, name: str) -> Any:
45
+ try:
46
+ return self[name]
47
+ except KeyError:
48
+ raise AttributeError(name)
49
+
50
+ def __setattr__(self, name: str, value: Any) -> None:
51
+ self[name] = value
52
+
53
+ def __delattr__(self, name: str) -> None:
54
+ del self[name]
55
+
56
+
57
+ class Logger(object):
58
+ """Redirect stderr to stdout, optionally print stdout to a file, and optionally force flushing on both stdout and the file."""
59
+
60
+ def __init__(self, file_name: str = None, file_mode: str = "w", should_flush: bool = True):
61
+ self.file = None
62
+
63
+ if file_name is not None:
64
+ self.file = open(file_name, file_mode)
65
+
66
+ self.should_flush = should_flush
67
+ self.stdout = sys.stdout
68
+ self.stderr = sys.stderr
69
+
70
+ sys.stdout = self
71
+ sys.stderr = self
72
+
73
+ def __enter__(self) -> "Logger":
74
+ return self
75
+
76
+ def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
77
+ self.close()
78
+
79
+ def write(self, text: Union[str, bytes]) -> None:
80
+ """Write text to stdout (and a file) and optionally flush."""
81
+ if isinstance(text, bytes):
82
+ text = text.decode()
83
+ if len(text) == 0: # workaround for a bug in VSCode debugger: sys.stdout.write(''); sys.stdout.flush() => crash
84
+ return
85
+
86
+ if self.file is not None:
87
+ self.file.write(text)
88
+
89
+ self.stdout.write(text)
90
+
91
+ if self.should_flush:
92
+ self.flush()
93
+
94
+ def flush(self) -> None:
95
+ """Flush written text to both stdout and a file, if open."""
96
+ if self.file is not None:
97
+ self.file.flush()
98
+
99
+ self.stdout.flush()
100
+
101
+ def close(self) -> None:
102
+ """Flush, close possible files, and remove stdout/stderr mirroring."""
103
+ self.flush()
104
+
105
+ # if using multiple loggers, prevent closing in wrong order
106
+ if sys.stdout is self:
107
+ sys.stdout = self.stdout
108
+ if sys.stderr is self:
109
+ sys.stderr = self.stderr
110
+
111
+ if self.file is not None:
112
+ self.file.close()
113
+ self.file = None
114
+
115
+
116
+ # Cache directories
117
+ # ------------------------------------------------------------------------------------------
118
+
119
+ _dnnlib_cache_dir = None
120
+
121
+ def set_cache_dir(path: str) -> None:
122
+ global _dnnlib_cache_dir
123
+ _dnnlib_cache_dir = path
124
+
125
+ def make_cache_dir_path(*paths: str) -> str:
126
+ if _dnnlib_cache_dir is not None:
127
+ return os.path.join(_dnnlib_cache_dir, *paths)
128
+ if 'DNNLIB_CACHE_DIR' in os.environ:
129
+ return os.path.join(os.environ['DNNLIB_CACHE_DIR'], *paths)
130
+ if 'HOME' in os.environ:
131
+ return os.path.join(os.environ['HOME'], '.cache', 'dnnlib', *paths)
132
+ if 'USERPROFILE' in os.environ:
133
+ return os.path.join(os.environ['USERPROFILE'], '.cache', 'dnnlib', *paths)
134
+ return os.path.join(tempfile.gettempdir(), '.cache', 'dnnlib', *paths)
135
+
136
+ # Small util functions
137
+ # ------------------------------------------------------------------------------------------
138
+
139
+
140
+ def format_time(seconds: Union[int, float]) -> str:
141
+ """Convert the seconds to human readable string with days, hours, minutes and seconds."""
142
+ s = int(np.rint(seconds))
143
+
144
+ if s < 60:
145
+ return "{0}s".format(s)
146
+ elif s < 60 * 60:
147
+ return "{0}m {1:02}s".format(s // 60, s % 60)
148
+ elif s < 24 * 60 * 60:
149
+ return "{0}h {1:02}m {2:02}s".format(s // (60 * 60), (s // 60) % 60, s % 60)
150
+ else:
151
+ return "{0}d {1:02}h {2:02}m".format(s // (24 * 60 * 60), (s // (60 * 60)) % 24, (s // 60) % 60)
152
+
153
+
154
+ def ask_yes_no(question: str) -> bool:
155
+ """Ask the user the question until the user inputs a valid answer."""
156
+ while True:
157
+ try:
158
+ print("{0} [y/n]".format(question))
159
+ return strtobool(input().lower())
160
+ except ValueError:
161
+ pass
162
+
163
+
164
+ def tuple_product(t: Tuple) -> Any:
165
+ """Calculate the product of the tuple elements."""
166
+ result = 1
167
+
168
+ for v in t:
169
+ result *= v
170
+
171
+ return result
172
+
173
+
174
+ _str_to_ctype = {
175
+ "uint8": ctypes.c_ubyte,
176
+ "uint16": ctypes.c_uint16,
177
+ "uint32": ctypes.c_uint32,
178
+ "uint64": ctypes.c_uint64,
179
+ "int8": ctypes.c_byte,
180
+ "int16": ctypes.c_int16,
181
+ "int32": ctypes.c_int32,
182
+ "int64": ctypes.c_int64,
183
+ "float32": ctypes.c_float,
184
+ "float64": ctypes.c_double
185
+ }
186
+
187
+
188
+ def get_dtype_and_ctype(type_obj: Any) -> Tuple[np.dtype, Any]:
189
+ """Given a type name string (or an object having a __name__ attribute), return matching Numpy and ctypes types that have the same size in bytes."""
190
+ type_str = None
191
+
192
+ if isinstance(type_obj, str):
193
+ type_str = type_obj
194
+ elif hasattr(type_obj, "__name__"):
195
+ type_str = type_obj.__name__
196
+ elif hasattr(type_obj, "name"):
197
+ type_str = type_obj.name
198
+ else:
199
+ raise RuntimeError("Cannot infer type name from input")
200
+
201
+ assert type_str in _str_to_ctype.keys()
202
+
203
+ my_dtype = np.dtype(type_str)
204
+ my_ctype = _str_to_ctype[type_str]
205
+
206
+ assert my_dtype.itemsize == ctypes.sizeof(my_ctype)
207
+
208
+ return my_dtype, my_ctype
209
+
210
+
211
+ def is_pickleable(obj: Any) -> bool:
212
+ try:
213
+ with io.BytesIO() as stream:
214
+ pickle.dump(obj, stream)
215
+ return True
216
+ except:
217
+ return False
218
+
219
+
220
+ # Functionality to import modules/objects by name, and call functions by name
221
+ # ------------------------------------------------------------------------------------------
222
+
223
+ def get_module_from_obj_name(obj_name: str) -> Tuple[types.ModuleType, str]:
224
+ """Searches for the underlying module behind the name to some python object.
225
+ Returns the module and the object name (original name with module part removed)."""
226
+
227
+ # allow convenience shorthands, substitute them by full names
228
+ obj_name = re.sub("^np.", "numpy.", obj_name)
229
+ obj_name = re.sub("^tf.", "tensorflow.", obj_name)
230
+
231
+ # list alternatives for (module_name, local_obj_name)
232
+ parts = obj_name.split(".")
233
+ name_pairs = [(".".join(parts[:i]), ".".join(parts[i:])) for i in range(len(parts), 0, -1)]
234
+
235
+ # try each alternative in turn
236
+ for module_name, local_obj_name in name_pairs:
237
+ try:
238
+ module = importlib.import_module(module_name) # may raise ImportError
239
+ get_obj_from_module(module, local_obj_name) # may raise AttributeError
240
+ return module, local_obj_name
241
+ except:
242
+ pass
243
+
244
+ # maybe some of the modules themselves contain errors?
245
+ for module_name, _local_obj_name in name_pairs:
246
+ try:
247
+ importlib.import_module(module_name) # may raise ImportError
248
+ except ImportError:
249
+ if not str(sys.exc_info()[1]).startswith("No module named '" + module_name + "'"):
250
+ raise
251
+
252
+ # maybe the requested attribute is missing?
253
+ for module_name, local_obj_name in name_pairs:
254
+ try:
255
+ module = importlib.import_module(module_name) # may raise ImportError
256
+ get_obj_from_module(module, local_obj_name) # may raise AttributeError
257
+ except ImportError:
258
+ pass
259
+
260
+ # we are out of luck, but we have no idea why
261
+ raise ImportError(obj_name)
262
+
263
+
264
+ def get_obj_from_module(module: types.ModuleType, obj_name: str) -> Any:
265
+ """Traverses the object name and returns the last (rightmost) python object."""
266
+ if obj_name == '':
267
+ return module
268
+ obj = module
269
+ for part in obj_name.split("."):
270
+ obj = getattr(obj, part)
271
+ return obj
272
+
273
+
274
+ def get_obj_by_name(name: str) -> Any:
275
+ """Finds the python object with the given name."""
276
+ module, obj_name = get_module_from_obj_name(name)
277
+ return get_obj_from_module(module, obj_name)
278
+
279
+
280
+ def call_func_by_name(*args, func_name: str = None, **kwargs) -> Any:
281
+ """Finds the python object with the given name and calls it as a function."""
282
+ assert func_name is not None
283
+ # print('func_name: ', func_name) #'training.dataset.ImageFolderDataset'
284
+ func_obj = get_obj_by_name(func_name)
285
+ assert callable(func_obj)
286
+ return func_obj(*args, **kwargs)
287
+
288
+
289
+ def construct_class_by_name(*args, class_name: str = None, **kwargs) -> Any:
290
+ """Finds the python class with the given name and constructs it with the given arguments."""
291
+ return call_func_by_name(*args, func_name=class_name, **kwargs)
292
+
293
+
294
+ def get_module_dir_by_obj_name(obj_name: str) -> str:
295
+ """Get the directory path of the module containing the given object name."""
296
+ module, _ = get_module_from_obj_name(obj_name)
297
+ return os.path.dirname(inspect.getfile(module))
298
+
299
+
300
+ def is_top_level_function(obj: Any) -> bool:
301
+ """Determine whether the given object is a top-level function, i.e., defined at module scope using 'def'."""
302
+ return callable(obj) and obj.__name__ in sys.modules[obj.__module__].__dict__
303
+
304
+
305
+ def get_top_level_function_name(obj: Any) -> str:
306
+ """Return the fully-qualified name of a top-level function."""
307
+ assert is_top_level_function(obj)
308
+ module = obj.__module__
309
+ if module == '__main__':
310
+ module = os.path.splitext(os.path.basename(sys.modules[module].__file__))[0]
311
+ return module + "." + obj.__name__
312
+
313
+
314
+ # File system helpers
315
+ # ------------------------------------------------------------------------------------------
316
+
317
+ def list_dir_recursively_with_ignore(dir_path: str, ignores: List[str] = None, add_base_to_relative: bool = False) -> List[Tuple[str, str]]:
318
+ """List all files recursively in a given directory while ignoring given file and directory names.
319
+ Returns list of tuples containing both absolute and relative paths."""
320
+ assert os.path.isdir(dir_path)
321
+ base_name = os.path.basename(os.path.normpath(dir_path))
322
+
323
+ if ignores is None:
324
+ ignores = []
325
+
326
+ result = []
327
+
328
+ for root, dirs, files in os.walk(dir_path, topdown=True):
329
+ for ignore_ in ignores:
330
+ dirs_to_remove = [d for d in dirs if fnmatch.fnmatch(d, ignore_)]
331
+
332
+ # dirs need to be edited in-place
333
+ for d in dirs_to_remove:
334
+ dirs.remove(d)
335
+
336
+ files = [f for f in files if not fnmatch.fnmatch(f, ignore_)]
337
+
338
+ absolute_paths = [os.path.join(root, f) for f in files]
339
+ relative_paths = [os.path.relpath(p, dir_path) for p in absolute_paths]
340
+
341
+ if add_base_to_relative:
342
+ relative_paths = [os.path.join(base_name, p) for p in relative_paths]
343
+
344
+ assert len(absolute_paths) == len(relative_paths)
345
+ result += zip(absolute_paths, relative_paths)
346
+
347
+ return result
348
+
349
+
350
+ def copy_files_and_create_dirs(files: List[Tuple[str, str]]) -> None:
351
+ """Takes in a list of tuples of (src, dst) paths and copies files.
352
+ Will create all necessary directories."""
353
+ for file in files:
354
+ target_dir_name = os.path.dirname(file[1])
355
+
356
+ # will create all intermediate-level directories
357
+ if not os.path.exists(target_dir_name):
358
+ os.makedirs(target_dir_name)
359
+
360
+ shutil.copyfile(file[0], file[1])
361
+
362
+
363
+ # URL helpers
364
+ # ------------------------------------------------------------------------------------------
365
+
366
+ def is_url(obj: Any, allow_file_urls: bool = False) -> bool:
367
+ """Determine whether the given object is a valid URL string."""
368
+ if not isinstance(obj, str) or not "://" in obj:
369
+ return False
370
+ if allow_file_urls and obj.startswith('file://'):
371
+ return True
372
+ try:
373
+ res = requests.compat.urlparse(obj)
374
+ if not res.scheme or not res.netloc or not "." in res.netloc:
375
+ return False
376
+ res = requests.compat.urlparse(requests.compat.urljoin(obj, "/"))
377
+ if not res.scheme or not res.netloc or not "." in res.netloc:
378
+ return False
379
+ except:
380
+ return False
381
+ return True
382
+
383
+
384
+ def open_url(url: str, cache_dir: str = None, num_attempts: int = 10, verbose: bool = True, return_filename: bool = False, cache: bool = True) -> Any:
385
+ """Download the given URL and return a binary-mode file object to access the data."""
386
+ assert num_attempts >= 1
387
+ assert not (return_filename and (not cache))
388
+
389
+ # Doesn't look like an URL scheme so interpret it as a local filename.
390
+ if not re.match('^[a-z]+://', url):
391
+ return url if return_filename else open(url, "rb")
392
+
393
+ # Handle file URLs. This code handles unusual file:// patterns that
394
+ # arise on Windows:
395
+ #
396
+ # file:///c:/foo.txt
397
+ #
398
+ # which would translate to a local '/c:/foo.txt' filename that's
399
+ # invalid. Drop the forward slash for such pathnames.
400
+ #
401
+ # If you touch this code path, you should test it on both Linux and
402
+ # Windows.
403
+ #
404
+ # Some internet resources suggest using urllib.request.url2pathname() but
405
+ # but that converts forward slashes to backslashes and this causes
406
+ # its own set of problems.
407
+ if url.startswith('file://'):
408
+ filename = urllib.parse.urlparse(url).path
409
+ if re.match(r'^/[a-zA-Z]:', filename):
410
+ filename = filename[1:]
411
+ return filename if return_filename else open(filename, "rb")
412
+
413
+ assert is_url(url)
414
+
415
+ # Lookup from cache.
416
+ if cache_dir is None:
417
+ cache_dir = make_cache_dir_path('downloads')
418
+
419
+ url_md5 = hashlib.md5(url.encode("utf-8")).hexdigest()
420
+ if cache:
421
+ cache_files = glob.glob(os.path.join(cache_dir, url_md5 + "_*"))
422
+ if len(cache_files) == 1:
423
+ filename = cache_files[0]
424
+ return filename if return_filename else open(filename, "rb")
425
+
426
+ # Download.
427
+ url_name = None
428
+ url_data = None
429
+ with requests.Session() as session:
430
+ if verbose:
431
+ print("Downloading %s ..." % url, end="", flush=True)
432
+ for attempts_left in reversed(range(num_attempts)):
433
+ try:
434
+ with session.get(url) as res:
435
+ res.raise_for_status()
436
+ if len(res.content) == 0:
437
+ raise IOError("No data received")
438
+
439
+ if len(res.content) < 8192:
440
+ content_str = res.content.decode("utf-8")
441
+ if "download_warning" in res.headers.get("Set-Cookie", ""):
442
+ links = [html.unescape(link) for link in content_str.split('"') if "export=download" in link]
443
+ if len(links) == 1:
444
+ url = requests.compat.urljoin(url, links[0])
445
+ raise IOError("Google Drive virus checker nag")
446
+ if "Google Drive - Quota exceeded" in content_str:
447
+ raise IOError("Google Drive download quota exceeded -- please try again later")
448
+
449
+ match = re.search(r'filename="([^"]*)"', res.headers.get("Content-Disposition", ""))
450
+ url_name = match[1] if match else url
451
+ url_data = res.content
452
+ if verbose:
453
+ print(" done")
454
+ break
455
+ except KeyboardInterrupt:
456
+ raise
457
+ except:
458
+ if not attempts_left:
459
+ if verbose:
460
+ print(" failed")
461
+ raise
462
+ if verbose:
463
+ print(".", end="", flush=True)
464
+
465
+ # Save to cache.
466
+ if cache:
467
+ safe_name = re.sub(r"[^0-9a-zA-Z-._]", "_", url_name)
468
+ cache_file = os.path.join(cache_dir, url_md5 + "_" + safe_name)
469
+ temp_file = os.path.join(cache_dir, "tmp_" + uuid.uuid4().hex + "_" + url_md5 + "_" + safe_name)
470
+ os.makedirs(cache_dir, exist_ok=True)
471
+ with open(temp_file, "wb") as f:
472
+ f.write(url_data)
473
+ os.replace(temp_file, cache_file) # atomic
474
+ if return_filename:
475
+ return cache_file
476
+
477
+ # Return data as file object.
478
+ assert not return_filename
479
+ return io.BytesIO(url_data)
losses/color_transfer_loss.py DELETED
@@ -1,60 +0,0 @@
1
- from typing import List, Optional
2
-
3
- import torch
4
- from torch import nn
5
- from torch.nn.functional import (
6
- smooth_l1_loss,
7
- )
8
-
9
-
10
- def flatten_CHW(im: torch.Tensor) -> torch.Tensor:
11
- """
12
- (B, C, H, W) -> (B, -1)
13
- """
14
- B = im.shape[0]
15
- return im.reshape(B, -1)
16
-
17
-
18
- def stddev(x: torch.Tensor) -> torch.Tensor:
19
- """
20
- x: (B, -1), assume with mean normalized
21
- Retuens:
22
- stddev: (B)
23
- """
24
- return torch.sqrt(torch.mean(x * x, dim=-1))
25
-
26
-
27
- def gram_matrix(input_):
28
- B, C = input_.shape[:2]
29
- features = input_.view(B, C, -1)
30
- N = features.shape[-1]
31
- G = torch.bmm(features, features.transpose(1, 2)) # C x C
32
- return G.div(C * N)
33
-
34
-
35
- class ColorTransferLoss(nn.Module):
36
- """Penalize the gram matrix difference between StyleGAN2's ToRGB outputs"""
37
- def __init__(
38
- self,
39
- init_rgbs,
40
- scale_rgb: bool = False
41
- ):
42
- super().__init__()
43
-
44
- with torch.no_grad():
45
- init_feats = [x.detach() for x in init_rgbs]
46
- self.stds = [stddev(flatten_CHW(rgb)) if scale_rgb else 1 for rgb in init_feats] # (B, 1, 1, 1) or scalar
47
- self.grams = [gram_matrix(rgb / std) for rgb, std in zip(init_feats, self.stds)]
48
-
49
- def forward(self, rgbs: List[torch.Tensor], level: int = None):
50
- if level is None:
51
- level = len(self.grams)
52
-
53
- feats = rgbs
54
- loss = 0
55
- for i, (rgb, std) in enumerate(zip(feats[:level], self.stds[:level])):
56
- G = gram_matrix(rgb / std)
57
- loss = loss + smooth_l1_loss(G, self.grams[i])
58
-
59
- return loss
60
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
losses/joint_loss.py DELETED
@@ -1,167 +0,0 @@
1
- from argparse import (
2
- ArgumentParser,
3
- Namespace,
4
- )
5
- from typing import (
6
- Dict,
7
- Iterable,
8
- Optional,
9
- Tuple,
10
- )
11
-
12
- import numpy as np
13
- import torch
14
- from torch import nn
15
-
16
- from utils.misc import (
17
- optional_string,
18
- iterable_to_str,
19
- )
20
-
21
- from .contextual_loss import ContextualLoss
22
- from .color_transfer_loss import ColorTransferLoss
23
- from .regularize_noise import NoiseRegularizer
24
- from .reconstruction import (
25
- EyeLoss,
26
- FaceLoss,
27
- create_perceptual_loss,
28
- ReconstructionArguments,
29
- )
30
-
31
- class LossArguments:
32
- @staticmethod
33
- def add_arguments(parser: ArgumentParser):
34
- ReconstructionArguments.add_arguments(parser)
35
-
36
- parser.add_argument("--color_transfer", type=float, default=1e10, help="color transfer loss weight")
37
- parser.add_argument("--eye", type=float, default=0.1, help="eye loss weight")
38
- parser.add_argument('--noise_regularize', type=float, default=5e4)
39
- # contextual loss
40
- parser.add_argument("--contextual", type=float, default=0.1, help="contextual loss weight")
41
- parser.add_argument("--cx_layers", nargs='*', help="contextual loss layers",
42
- choices=['relu1_2', 'relu2_2', 'relu3_4', 'relu4_4', 'relu5_4'],
43
- default=['relu3_4', 'relu2_2', 'relu1_2'])
44
-
45
- @staticmethod
46
- def to_string(args: Namespace) -> str:
47
- return (
48
- ReconstructionArguments.to_string(args)
49
- + optional_string(args.eye > 0, f"-eye{args.eye}")
50
- + optional_string(args.color_transfer, f"-color{args.color_transfer:.1e}")
51
- + optional_string(
52
- args.contextual,
53
- f"-cx{args.contextual}({iterable_to_str(args.cx_layers)})"
54
- )
55
- #+ optional_string(args.mse, f"-mse{args.mse}")
56
- + optional_string(args.noise_regularize, f"-NR{args.noise_regularize:.1e}")
57
- )
58
-
59
-
60
- class BakedMultiContextualLoss(nn.Module):
61
- """Random sample different image patches for different vgg layers."""
62
- def __init__(self, sibling: torch.Tensor, args: Namespace, size: int = 256):
63
- super().__init__()
64
-
65
- self.cxs = nn.ModuleList([ContextualLoss(use_vgg=True, vgg_layers=[layer])
66
- for layer in args.cx_layers])
67
- self.size = size
68
- self.sibling = sibling.detach()
69
-
70
- def forward(self, img: torch.Tensor):
71
- cx_loss = 0
72
- for cx in self.cxs:
73
- h, w = np.random.randint(0, high=img.shape[-1] - self.size, size=2)
74
- cx_loss = cx(self.sibling[..., h:h+self.size, w:w+self.size], img[..., h:h+self.size, w:w+self.size]) + cx_loss
75
- return cx_loss
76
-
77
-
78
- class BakedContextualLoss(ContextualLoss):
79
- def __init__(self, sibling: torch.Tensor, args: Namespace, size: int = 256):
80
- super().__init__(use_vgg=True, vgg_layers=args.cx_layers)
81
- self.size = size
82
- self.sibling = sibling.detach()
83
-
84
- def forward(self, img: torch.Tensor):
85
- h, w = np.random.randint(0, high=img.shape[-1] - self.size, size=2)
86
- return super().forward(self.sibling[..., h:h+self.size, w:w+self.size], img[..., h:h+self.size, w:w+self.size])
87
-
88
-
89
- class JointLoss(nn.Module):
90
- def __init__(
91
- self,
92
- args: Namespace,
93
- target: torch.Tensor,
94
- sibling: Optional[torch.Tensor],
95
- sibling_rgbs: Optional[Iterable[torch.Tensor]] = None,
96
- ):
97
- super().__init__()
98
-
99
- self.weights = {
100
- "face": 1., "eye": args.eye,
101
- "contextual": args.contextual, "color_transfer": args.color_transfer,
102
- "noise": args.noise_regularize,
103
- }
104
-
105
- reconstruction = {}
106
- if args.vgg > 0 or args.vggface > 0:
107
- percept = create_perceptual_loss(args)
108
- reconstruction.update(
109
- {"face": FaceLoss(target, input_size=args.generator_size, size=args.recon_size, percept=percept)}
110
- )
111
- if args.eye > 0:
112
- reconstruction.update(
113
- {"eye": EyeLoss(target, input_size=args.generator_size, percept=percept)}
114
- )
115
- self.reconstruction = nn.ModuleDict(reconstruction)
116
-
117
- exemplar = {}
118
- if args.contextual > 0 and len(args.cx_layers) > 0:
119
- assert sibling is not None
120
- exemplar.update(
121
- {"contextual": BakedContextualLoss(sibling, args)}
122
- )
123
- if args.color_transfer > 0:
124
- assert sibling_rgbs is not None
125
- self.sibling_rgbs = sibling_rgbs
126
- exemplar.update(
127
- {"color_transfer": ColorTransferLoss(init_rgbs=sibling_rgbs)}
128
- )
129
- self.exemplar = nn.ModuleDict(exemplar)
130
-
131
- if args.noise_regularize > 0:
132
- self.noise_criterion = NoiseRegularizer()
133
-
134
- def forward(
135
- self, img, degrade=None, noises=None, rgbs=None, rgb_level: Optional[int] = None
136
- ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
137
- """
138
- Args:
139
- rgbs: results from the ToRGB layers
140
- """
141
- # TODO: add current optimization resolution for noises
142
-
143
- losses = {}
144
-
145
- # reconstruction losses
146
- for name, criterion in self.reconstruction.items():
147
- losses[name] = criterion(img, degrade=degrade)
148
-
149
- # exemplar losses
150
- if 'contextual' in self.exemplar:
151
- losses["contextual"] = self.exemplar["contextual"](img)
152
- if "color_transfer" in self.exemplar:
153
- assert rgbs is not None
154
- losses["color_transfer"] = self.exemplar["color_transfer"](rgbs, level=rgb_level)
155
-
156
- # noise regularizer
157
- if self.weights["noise"] > 0:
158
- losses["noise"] = self.noise_criterion(noises)
159
-
160
- total_loss = 0
161
- for name, loss in losses.items():
162
- total_loss = total_loss + self.weights[name] * loss
163
- return total_loss, losses
164
-
165
- def update_sibling(self, sibling: torch.Tensor):
166
- assert "contextual" in self.exemplar
167
- self.exemplar["contextual"].sibling = sibling.detach()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
losses/perceptual_loss.py DELETED
@@ -1,111 +0,0 @@
1
- """
2
- Code borrowed from https://gist.github.com/alper111/8233cdb0414b4cb5853f2f730ab95a49#file-vgg_perceptual_loss-py-L5
3
- """
4
- import torch
5
- import torchvision
6
- from models.vggface import VGGFaceFeats
7
-
8
-
9
- def cos_loss(fi, ft):
10
- return 1 - torch.nn.functional.cosine_similarity(fi, ft).mean()
11
-
12
-
13
- class VGGPerceptualLoss(torch.nn.Module):
14
- def __init__(self, resize=False):
15
- super(VGGPerceptualLoss, self).__init__()
16
- blocks = []
17
- blocks.append(torchvision.models.vgg16(pretrained=True).features[:4].eval())
18
- blocks.append(torchvision.models.vgg16(pretrained=True).features[4:9].eval())
19
- blocks.append(torchvision.models.vgg16(pretrained=True).features[9:16].eval())
20
- blocks.append(torchvision.models.vgg16(pretrained=True).features[16:23].eval())
21
- for bl in blocks:
22
- for p in bl:
23
- p.requires_grad = False
24
- self.blocks = torch.nn.ModuleList(blocks)
25
- self.transform = torch.nn.functional.interpolate
26
- self.mean = torch.nn.Parameter(torch.tensor([0.485, 0.456, 0.406]).view(1,3,1,1))
27
- self.std = torch.nn.Parameter(torch.tensor([0.229, 0.224, 0.225]).view(1,3,1,1))
28
- self.resize = resize
29
-
30
- def forward(self, input, target, max_layer=4, cos_dist: bool = False):
31
- target = (target + 1) * 0.5
32
- input = (input + 1) * 0.5
33
-
34
- if input.shape[1] != 3:
35
- input = input.repeat(1, 3, 1, 1)
36
- target = target.repeat(1, 3, 1, 1)
37
- input = (input-self.mean) / self.std
38
- target = (target-self.mean) / self.std
39
- if self.resize:
40
- input = self.transform(input, mode='bilinear', size=(224, 224), align_corners=False)
41
- target = self.transform(target, mode='bilinear', size=(224, 224), align_corners=False)
42
- x = input
43
- y = target
44
- loss = 0.0
45
- loss_func = cos_loss if cos_dist else torch.nn.functional.l1_loss
46
- for bi, block in enumerate(self.blocks[:max_layer]):
47
- x = block(x)
48
- y = block(y)
49
- loss += loss_func(x, y.detach())
50
- return loss
51
-
52
-
53
- class VGGFacePerceptualLoss(torch.nn.Module):
54
- def __init__(self, weight_path: str = "checkpoint/vgg_face_dag.pt", resize: bool = False):
55
- super().__init__()
56
- self.vgg = VGGFaceFeats()
57
- self.vgg.load_state_dict(torch.load(weight_path))
58
-
59
- mean = torch.tensor(self.vgg.meta["mean"]).view(1, 3, 1, 1) / 255.0
60
- self.register_buffer("mean", mean)
61
-
62
- self.transform = torch.nn.functional.interpolate
63
- self.resize = resize
64
-
65
- def forward(self, input, target, max_layer: int = 4, cos_dist: bool = False):
66
- target = (target + 1) * 0.5
67
- input = (input + 1) * 0.5
68
-
69
- # preprocessing
70
- if input.shape[1] != 3:
71
- input = input.repeat(1, 3, 1, 1)
72
- target = target.repeat(1, 3, 1, 1)
73
- input = input - self.mean
74
- target = target - self.mean
75
- if self.resize:
76
- input = self.transform(input, mode='bilinear', size=(224, 224), align_corners=False)
77
- target = self.transform(target, mode='bilinear', size=(224, 224), align_corners=False)
78
-
79
- input_feats = self.vgg(input)
80
- target_feats = self.vgg(target)
81
-
82
- loss_func = cos_loss if cos_dist else torch.nn.functional.l1_loss
83
- # calc perceptual loss
84
- loss = 0.0
85
- for fi, ft in zip(input_feats[:max_layer], target_feats[:max_layer]):
86
- loss = loss + loss_func(fi, ft.detach())
87
- return loss
88
-
89
-
90
- class PerceptualLoss(torch.nn.Module):
91
- def __init__(
92
- self, lambda_vggface: float = 0.025 / 0.15, lambda_vgg: float = 1, eps: float = 1e-8, cos_dist: bool = False
93
- ):
94
- super().__init__()
95
- self.register_buffer("lambda_vggface", torch.tensor(lambda_vggface))
96
- self.register_buffer("lambda_vgg", torch.tensor(lambda_vgg))
97
- self.cos_dist = cos_dist
98
-
99
- if lambda_vgg > eps:
100
- self.vgg = VGGPerceptualLoss()
101
- if lambda_vggface > eps:
102
- self.vggface = VGGFacePerceptualLoss()
103
-
104
- def forward(self, input, target, eps=1e-8, use_vggface: bool = True, use_vgg=True, max_vgg_layer=4):
105
- loss = 0.0
106
- if self.lambda_vgg > eps and use_vgg:
107
- loss = loss + self.lambda_vgg * self.vgg(input, target, max_layer=max_vgg_layer)
108
- if self.lambda_vggface > eps and use_vggface:
109
- loss = loss + self.lambda_vggface * self.vggface(input, target, cos_dist=self.cos_dist)
110
- return loss
111
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
losses/reconstruction.py DELETED
@@ -1,119 +0,0 @@
1
- from argparse import (
2
- ArgumentParser,
3
- Namespace,
4
- )
5
- from typing import Optional
6
-
7
- import numpy as np
8
- import torch
9
- from torch import nn
10
-
11
- from losses.perceptual_loss import PerceptualLoss
12
- from models.degrade import Downsample
13
- from utils.misc import optional_string
14
-
15
-
16
- class ReconstructionArguments:
17
- @staticmethod
18
- def add_arguments(parser: ArgumentParser):
19
- parser.add_argument("--vggface", type=float, default=0.3, help="vggface")
20
- parser.add_argument("--vgg", type=float, default=1, help="vgg")
21
- parser.add_argument('--recon_size', type=int, default=256, help="size for face reconstruction loss")
22
-
23
- @staticmethod
24
- def to_string(args: Namespace) -> str:
25
- return (
26
- f"s{args.recon_size}"
27
- + optional_string(args.vgg > 0, f"-vgg{args.vgg}")
28
- + optional_string(args.vggface > 0, f"-vggface{args.vggface}")
29
- )
30
-
31
-
32
- def create_perceptual_loss(args: Namespace):
33
- return PerceptualLoss(lambda_vgg=args.vgg, lambda_vggface=args.vggface, cos_dist=False)
34
-
35
-
36
- class EyeLoss(nn.Module):
37
- def __init__(
38
- self,
39
- target: torch.Tensor,
40
- input_size: int = 1024,
41
- input_channels: int = 3,
42
- percept: Optional[nn.Module] = None,
43
- args: Optional[Namespace] = None
44
- ):
45
- """
46
- target: target image
47
- """
48
- assert not (percept is None and args is None)
49
-
50
- super().__init__()
51
-
52
- self.target = target
53
-
54
- target_size = target.shape[-1]
55
- self.downsample = Downsample(input_size, target_size, input_channels) \
56
- if target_size != input_size else (lambda x: x)
57
-
58
- self.percept = percept if percept is not None else create_perceptual_loss(args)
59
-
60
- eye_size = np.array((224, 224))
61
- btlrs = []
62
- for sgn in [1, -1]:
63
- center = np.array((480, 384 * sgn)) # (y, x)
64
- b, t = center[0] - eye_size[0] // 2, center[0] + eye_size[0] // 2
65
- l, r = center[1] - eye_size[1] // 2, center[1] + eye_size[1] // 2
66
- btlrs.append((np.array((b, t, l, r)) / 1024 * target_size).astype(int))
67
- self.btlrs = np.stack(btlrs, axis=0)
68
-
69
- def forward(self, img: torch.Tensor, degrade: nn.Module = None):
70
- """
71
- img: it should be the degraded version of the generated image
72
- """
73
- if degrade is not None:
74
- img = degrade(img, downsample=self.downsample)
75
-
76
- loss = 0
77
- for (b, t, l, r) in self.btlrs:
78
- loss = loss + self.percept(
79
- img[:, :, b:t, l:r], self.target[:, :, b:t, l:r],
80
- use_vggface=False, max_vgg_layer=4,
81
- # use_vgg=False,
82
- )
83
- return loss
84
-
85
-
86
- class FaceLoss(nn.Module):
87
- def __init__(
88
- self,
89
- target: torch.Tensor,
90
- input_size: int = 1024,
91
- input_channels: int = 3,
92
- size: int = 256,
93
- percept: Optional[nn.Module] = None,
94
- args: Optional[Namespace] = None
95
- ):
96
- """
97
- target: target image
98
- """
99
- assert not (percept is None and args is None)
100
-
101
- super().__init__()
102
-
103
- target_size = target.shape[-1]
104
- self.target = target if target_size == size \
105
- else Downsample(target_size, size, target.shape[1]).to(target.device)(target)
106
-
107
- self.downsample = Downsample(input_size, size, input_channels) \
108
- if size != input_size else (lambda x: x)
109
-
110
- self.percept = percept if percept is not None else create_perceptual_loss(args)
111
-
112
- def forward(self, img: torch.Tensor, degrade: nn.Module = None):
113
- """
114
- img: it should be the degraded version of the generated image
115
- """
116
- if degrade is not None:
117
- img = degrade(img, downsample=self.downsample)
118
- loss = self.percept(img, self.target)
119
- return loss
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
losses/regularize_noise.py DELETED
@@ -1,37 +0,0 @@
1
- from typing import Iterable
2
-
3
- import torch
4
- from torch import nn
5
-
6
-
7
- class NoiseRegularizer(nn.Module):
8
- def forward(self, noises: Iterable[torch.Tensor]):
9
- loss = 0
10
-
11
- for noise in noises:
12
- size = noise.shape[2]
13
-
14
- while True:
15
- loss = (
16
- loss
17
- + (noise * torch.roll(noise, shifts=1, dims=3)).mean().pow(2)
18
- + (noise * torch.roll(noise, shifts=1, dims=2)).mean().pow(2)
19
- )
20
-
21
- if size <= 8:
22
- break
23
-
24
- noise = noise.reshape([1, 1, size // 2, 2, size // 2, 2])
25
- noise = noise.mean([3, 5])
26
- size //= 2
27
-
28
- return loss
29
-
30
- @staticmethod
31
- def normalize(noises: Iterable[torch.Tensor]):
32
- for noise in noises:
33
- mean = noise.mean()
34
- std = noise.std()
35
-
36
- noise.data.add_(-mean).div_(std)
37
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/__init__.py DELETED
File without changes
models/degrade.py DELETED
@@ -1,122 +0,0 @@
1
- from argparse import (
2
- ArgumentParser,
3
- Namespace,
4
- )
5
-
6
- import torch
7
- from torch import nn
8
- from torch.nn import functional as F
9
-
10
- from utils.misc import optional_string
11
-
12
- from .gaussian_smoothing import GaussianSmoothing
13
-
14
-
15
- class DegradeArguments:
16
- @staticmethod
17
- def add_arguments(parser: ArgumentParser):
18
- parser.add_argument('--spectral_sensitivity', choices=["g", "b", "gb"], default="g",
19
- help="Type of spectral sensitivity. g: grayscale (panchromatic), b: blue-sensitive, gb: green+blue (orthochromatic)")
20
- parser.add_argument('--gaussian', type=float, default=0,
21
- help="estimated blur radius in pixels of the input photo if it is scaled to 1024x1024")
22
-
23
- @staticmethod
24
- def to_string(args: Namespace) -> str:
25
- return (
26
- f"{args.spectral_sensitivity}"
27
- + optional_string(args.gaussian > 0, f"-G{args.gaussian}")
28
- )
29
-
30
-
31
- class CameraResponse(nn.Module):
32
- def __init__(self):
33
- super().__init__()
34
-
35
- self.register_parameter("gamma", nn.Parameter(torch.ones(1)))
36
- self.register_parameter("offset", nn.Parameter(torch.zeros(1)))
37
- self.register_parameter("gain", nn.Parameter(torch.ones(1)))
38
-
39
- def forward(self, x: torch.Tensor) -> torch.Tensor:
40
- x = torch.clamp(x, max=1, min=-1+1e-2)
41
- x = (1 + x) * 0.5
42
- x = self.offset + self.gain * torch.pow(x, self.gamma)
43
- x = (x - 0.5) * 2
44
- # b = torch.clamp(b, max=1, min=-1)
45
- return x
46
-
47
-
48
- class SpectralResponse(nn.Module):
49
- # TODO: use enum instead for color mode
50
- def __init__(self, spectral_sensitivity: str = 'b'):
51
- assert spectral_sensitivity in ("g", "b", "gb"), f"spectral_sensitivity {spectral_sensitivity} is not implemented."
52
-
53
- super().__init__()
54
-
55
- self.spectral_sensitivity = spectral_sensitivity
56
-
57
- if self.spectral_sensitivity == "g":
58
- self.register_buffer("to_gray", torch.tensor([0.299, 0.587, 0.114]).reshape(1, -1, 1, 1))
59
-
60
- def forward(self, rgb: torch.Tensor) -> torch.Tensor:
61
- if self.spectral_sensitivity == "b":
62
- x = rgb[:, -1:]
63
- elif self.spectral_sensitivity == "gb":
64
- x = (rgb[:, 1:2] + rgb[:, -1:]) * 0.5
65
- else:
66
- assert self.spectral_sensitivity == "g"
67
- x = (rgb * self.to_gray).sum(dim=1, keepdim=True)
68
- return x
69
-
70
-
71
- class Downsample(nn.Module):
72
- """Antialiasing downsampling"""
73
- def __init__(self, input_size: int, output_size: int, channels: int):
74
- super().__init__()
75
- if input_size % output_size == 0:
76
- self.stride = input_size // output_size
77
- self.grid = None
78
- else:
79
- self.stride = 1
80
- step = input_size / output_size
81
- x = torch.arange(output_size) * step
82
- Y, X = torch.meshgrid(x, x)
83
- grid = torch.stack((X, Y), dim=-1)
84
- grid /= torch.Tensor((input_size - 1, input_size - 1)).view(1, 1, -1)
85
- grid = grid * 2 - 1
86
- self.register_buffer("grid", grid)
87
- sigma = 0.5 * input_size / output_size
88
- #print(f"{input_size} -> {output_size}: sigma={sigma}")
89
- self.blur = GaussianSmoothing(channels, int(2 * (sigma * 2) + 1 + 0.5), sigma)
90
-
91
- def forward(self, im: torch.Tensor):
92
- out = self.blur(im, stride=self.stride)
93
- if self.grid is not None:
94
- out = F.grid_sample(out, self.grid[None].expand(im.shape[0], -1, -1, -1))
95
- return out
96
-
97
-
98
-
99
- class Degrade(nn.Module):
100
- """
101
- Simulate the degradation of antique film
102
- """
103
- def __init__(self, args:Namespace):
104
- super().__init__()
105
- self.srf = SpectralResponse(args.spectral_sensitivity)
106
- self.crf = CameraResponse()
107
- self.gaussian = None
108
- if args.gaussian is not None and args.gaussian > 0:
109
- self.gaussian = GaussianSmoothing(3, 2 * int(args.gaussian * 2 + 0.5) + 1, args.gaussian)
110
-
111
- def forward(self, img: torch.Tensor, downsample: nn.Module = None):
112
- if self.gaussian is not None:
113
- img = self.gaussian(img)
114
- if downsample is not None:
115
- img = downsample(img)
116
- img = self.srf(img)
117
- img = self.crf(img)
118
- # Note that I changed it back to 3 channels
119
- return img.repeat((1, 3, 1, 1)) if img.shape[1] == 1 else img
120
-
121
-
122
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/encoder.py DELETED
@@ -1,66 +0,0 @@
1
- from argparse import Namespace, ArgumentParser
2
- from functools import partial
3
-
4
- from torch import nn
5
-
6
- from .resnet import ResNetBasicBlock, activation_func, norm_module, Conv2dAuto
7
-
8
-
9
- def add_arguments(parser: ArgumentParser) -> ArgumentParser:
10
- parser.add_argument("--latent_size", type=int, default=512, help="latent size")
11
- return parser
12
-
13
-
14
- def create_model(args) -> nn.Module:
15
- in_channels = 3 if "rgb" in args and args.rgb else 1
16
- return Encoder(in_channels, args.encoder_size, latent_size=args.latent_size)
17
-
18
-
19
- class Flatten(nn.Module):
20
- def forward(self, input_):
21
- return input_.view(input_.size(0), -1)
22
-
23
-
24
- class Encoder(nn.Module):
25
- def __init__(
26
- self, in_channels: int, size: int, latent_size: int = 512,
27
- activation: str = 'leaky_relu', norm: str = "instance"
28
- ):
29
- super().__init__()
30
-
31
- out_channels0 = 64
32
- norm_m = norm_module(norm)
33
- self.conv0 = nn.Sequential(
34
- Conv2dAuto(in_channels, out_channels0, kernel_size=5),
35
- norm_m(out_channels0),
36
- activation_func(activation),
37
- )
38
-
39
- pool_kernel = 2
40
- self.pool = nn.AvgPool2d(pool_kernel)
41
-
42
- num_channels = [128, 256, 512, 512]
43
- # FIXME: this is a hack
44
- if size >= 256:
45
- num_channels.append(512)
46
-
47
- residual = partial(ResNetBasicBlock, activation=activation, norm=norm, bias=True)
48
- residual_blocks = nn.ModuleList()
49
- for in_channel, out_channel in zip([out_channels0] + num_channels[:-1], num_channels):
50
- residual_blocks.append(residual(in_channel, out_channel))
51
- residual_blocks.append(nn.AvgPool2d(pool_kernel))
52
- self.residual_blocks = nn.Sequential(*residual_blocks)
53
-
54
- self.last = nn.Sequential(
55
- nn.ReLU(),
56
- nn.AvgPool2d(4), # TODO: not sure whehter this would cause problem
57
- Flatten(),
58
- nn.Linear(num_channels[-1], latent_size, bias=True)
59
- )
60
-
61
- def forward(self, input_):
62
- out = self.conv0(input_)
63
- out = self.pool(out)
64
- out = self.residual_blocks(out)
65
- out = self.last(out)
66
- return out
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/gaussian_smoothing.py DELETED
@@ -1,74 +0,0 @@
1
- import math
2
- import numbers
3
- import torch
4
- from torch import nn
5
- from torch.nn import functional as F
6
-
7
-
8
- class GaussianSmoothing(nn.Module):
9
- """
10
- Apply gaussian smoothing on a
11
- 1d, 2d or 3d tensor. Filtering is performed seperately for each channel
12
- in the input using a depthwise convolution.
13
- Arguments:
14
- channels (int, sequence): Number of channels of the input tensors. Output will
15
- have this number of channels as well.
16
- kernel_size (int, sequence): Size of the gaussian kernel.
17
- sigma (float, sequence): Standard deviation of the gaussian kernel.
18
- dim (int, optional): The number of dimensions of the data.
19
- Default value is 2 (spatial).
20
- """
21
- def __init__(self, channels, kernel_size, sigma, dim=2):
22
- super(GaussianSmoothing, self).__init__()
23
- if isinstance(kernel_size, numbers.Number):
24
- kernel_size = [kernel_size] * dim
25
- if isinstance(sigma, numbers.Number):
26
- sigma = [sigma] * dim
27
-
28
- # The gaussian kernel is the product of the
29
- # gaussian function of each dimension.
30
- kernel = 1
31
- meshgrids = torch.meshgrid(
32
- [
33
- torch.arange(size, dtype=torch.float32)
34
- for size in kernel_size
35
- ]
36
- )
37
- for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
38
- mean = (size - 1) / 2
39
- kernel *= 1 / (std * math.sqrt(2 * math.pi)) * \
40
- torch.exp(-((mgrid - mean) / (2 * std)) ** 2)
41
-
42
- # Make sure sum of values in gaussian kernel equals 1.
43
- kernel = kernel / torch.sum(kernel)
44
-
45
- # Reshape to depthwise convolutional weight
46
- kernel = kernel.view(1, 1, *kernel.size())
47
- kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1))
48
-
49
- self.register_buffer('weight', kernel)
50
- self.groups = channels
51
-
52
- if dim == 1:
53
- self.conv = F.conv1d
54
- elif dim == 2:
55
- self.conv = F.conv2d
56
- elif dim == 3:
57
- self.conv = F.conv3d
58
- else:
59
- raise RuntimeError(
60
- 'Only 1, 2 and 3 dimensions are supported. Received {}.'.format(dim)
61
- )
62
-
63
- def forward(self, input, stride: int = 1):
64
- """
65
- Apply gaussian filter to input.
66
- Arguments:
67
- input (torch.Tensor): Input to apply gaussian filter on.
68
- stride for applying conv
69
- Returns:
70
- filtered (torch.Tensor): Filtered output.
71
- """
72
- padding = (self.weight.shape[-1] - 1) // 2
73
- return self.conv(input, weight=self.weight, groups=self.groups, padding=padding, stride=stride)
74
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/resnet.py DELETED
@@ -1,99 +0,0 @@
1
- from functools import partial
2
-
3
- from torch import nn
4
-
5
-
6
- def activation_func(activation: str):
7
- return nn.ModuleDict([
8
- ['relu', nn.ReLU(inplace=True)],
9
- ['leaky_relu', nn.LeakyReLU(negative_slope=0.01, inplace=True)],
10
- ['selu', nn.SELU(inplace=True)],
11
- ['none', nn.Identity()]
12
- ])[activation]
13
-
14
-
15
- def norm_module(norm: str):
16
- return {
17
- 'batch': nn.BatchNorm2d,
18
- 'instance': nn.InstanceNorm2d,
19
- }[norm]
20
-
21
-
22
- class Conv2dAuto(nn.Conv2d):
23
- def __init__(self, *args, **kwargs):
24
- super().__init__(*args, **kwargs)
25
- # dynamic add padding based on the kernel_size
26
- self.padding = (self.kernel_size[0] // 2, self.kernel_size[1] // 2)
27
-
28
-
29
- conv3x3 = partial(Conv2dAuto, kernel_size=3)
30
-
31
-
32
- class ResidualBlock(nn.Module):
33
- def __init__(self, in_channels: int, out_channels: int, activation: str = 'relu'):
34
- super().__init__()
35
- self.in_channels, self.out_channels = in_channels, out_channels
36
- self.blocks = nn.Identity()
37
- self.activate = activation_func(activation)
38
- self.shortcut = nn.Identity()
39
-
40
- def forward(self, x):
41
- residual = x
42
- if self.should_apply_shortcut:
43
- residual = self.shortcut(x)
44
- x = self.blocks(x)
45
- x += residual
46
- x = self.activate(x)
47
- return x
48
-
49
- @property
50
- def should_apply_shortcut(self):
51
- return self.in_channels != self.out_channels
52
-
53
-
54
- class ResNetResidualBlock(ResidualBlock):
55
- def __init__(
56
- self, in_channels: int, out_channels: int,
57
- expansion: int = 1, downsampling: int = 1,
58
- conv=conv3x3, norm: str = 'batch', *args, **kwargs
59
- ):
60
- super().__init__(in_channels, out_channels, *args, **kwargs)
61
- self.expansion, self.downsampling = expansion, downsampling
62
- self.conv, self.norm = conv, norm_module(norm)
63
- self.shortcut = nn.Sequential(
64
- nn.Conv2d(self.in_channels, self.expanded_channels, kernel_size=1,
65
- stride=self.downsampling, bias=False),
66
- self.norm(self.expanded_channels)) if self.should_apply_shortcut else None
67
-
68
- @property
69
- def expanded_channels(self):
70
- return self.out_channels * self.expansion
71
-
72
- @property
73
- def should_apply_shortcut(self):
74
- return self.in_channels != self.expanded_channels
75
-
76
-
77
- def conv_norm(in_channels: int, out_channels: int, conv, norm, *args, **kwargs):
78
- return nn.Sequential(conv(in_channels, out_channels, *args, **kwargs), norm(out_channels))
79
-
80
-
81
- class ResNetBasicBlock(ResNetResidualBlock):
82
- """
83
- Basic ResNet block composed by two layers of 3x3conv/batchnorm/activation
84
- """
85
- expansion = 1
86
-
87
- def __init__(
88
- self, in_channels: int, out_channels: int, bias: bool = False, *args, **kwargs
89
- ):
90
- super().__init__(in_channels, out_channels, *args, **kwargs)
91
- self.blocks = nn.Sequential(
92
- conv_norm(
93
- self.in_channels, self.out_channels, conv=self.conv, norm=self.norm,
94
- bias=bias, stride=self.downsampling
95
- ),
96
- self.activate,
97
- conv_norm(self.out_channels, self.expanded_channels, conv=self.conv, norm=self.norm, bias=bias),
98
- )
99
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/vggface.py DELETED
@@ -1,150 +0,0 @@
1
-
2
- import torch
3
- import torch.nn as nn
4
-
5
-
6
- class Vgg_face_dag(nn.Module):
7
-
8
- def __init__(self):
9
- super(Vgg_face_dag, self).__init__()
10
- self.meta = {'mean': [129.186279296875, 104.76238250732422, 93.59396362304688],
11
- 'std': [1, 1, 1],
12
- 'imageSize': [224, 224, 3]}
13
- self.conv1_1 = nn.Conv2d(3, 64, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
14
- self.relu1_1 = nn.ReLU(inplace=True)
15
- self.conv1_2 = nn.Conv2d(64, 64, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
16
- self.relu1_2 = nn.ReLU(inplace=True)
17
- self.pool1 = nn.MaxPool2d(kernel_size=[2, 2], stride=[2, 2], padding=0, dilation=1, ceil_mode=False)
18
- self.conv2_1 = nn.Conv2d(64, 128, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
19
- self.relu2_1 = nn.ReLU(inplace=True)
20
- self.conv2_2 = nn.Conv2d(128, 128, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
21
- self.relu2_2 = nn.ReLU(inplace=True)
22
- self.pool2 = nn.MaxPool2d(kernel_size=[2, 2], stride=[2, 2], padding=0, dilation=1, ceil_mode=False)
23
- self.conv3_1 = nn.Conv2d(128, 256, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
24
- self.relu3_1 = nn.ReLU(inplace=True)
25
- self.conv3_2 = nn.Conv2d(256, 256, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
26
- self.relu3_2 = nn.ReLU(inplace=True)
27
- self.conv3_3 = nn.Conv2d(256, 256, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
28
- self.relu3_3 = nn.ReLU(inplace=True)
29
- self.pool3 = nn.MaxPool2d(kernel_size=[2, 2], stride=[2, 2], padding=0, dilation=1, ceil_mode=False)
30
- self.conv4_1 = nn.Conv2d(256, 512, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
31
- self.relu4_1 = nn.ReLU(inplace=True)
32
- self.conv4_2 = nn.Conv2d(512, 512, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
33
- self.relu4_2 = nn.ReLU(inplace=True)
34
- self.conv4_3 = nn.Conv2d(512, 512, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
35
- self.relu4_3 = nn.ReLU(inplace=True)
36
- self.pool4 = nn.MaxPool2d(kernel_size=[2, 2], stride=[2, 2], padding=0, dilation=1, ceil_mode=False)
37
- self.conv5_1 = nn.Conv2d(512, 512, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
38
- self.relu5_1 = nn.ReLU(inplace=True)
39
- self.conv5_2 = nn.Conv2d(512, 512, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
40
- self.relu5_2 = nn.ReLU(inplace=True)
41
- self.conv5_3 = nn.Conv2d(512, 512, kernel_size=[3, 3], stride=(1, 1), padding=(1, 1))
42
- self.relu5_3 = nn.ReLU(inplace=True)
43
- self.pool5 = nn.MaxPool2d(kernel_size=[2, 2], stride=[2, 2], padding=0, dilation=1, ceil_mode=False)
44
- self.fc6 = nn.Linear(in_features=25088, out_features=4096, bias=True)
45
- self.relu6 = nn.ReLU(inplace=True)
46
- self.dropout6 = nn.Dropout(p=0.5)
47
- self.fc7 = nn.Linear(in_features=4096, out_features=4096, bias=True)
48
- self.relu7 = nn.ReLU(inplace=True)
49
- self.dropout7 = nn.Dropout(p=0.5)
50
- self.fc8 = nn.Linear(in_features=4096, out_features=2622, bias=True)
51
-
52
- def forward(self, x0):
53
- x1 = self.conv1_1(x0)
54
- x2 = self.relu1_1(x1)
55
- x3 = self.conv1_2(x2)
56
- x4 = self.relu1_2(x3)
57
- x5 = self.pool1(x4)
58
- x6 = self.conv2_1(x5)
59
- x7 = self.relu2_1(x6)
60
- x8 = self.conv2_2(x7)
61
- x9 = self.relu2_2(x8)
62
- x10 = self.pool2(x9)
63
- x11 = self.conv3_1(x10)
64
- x12 = self.relu3_1(x11)
65
- x13 = self.conv3_2(x12)
66
- x14 = self.relu3_2(x13)
67
- x15 = self.conv3_3(x14)
68
- x16 = self.relu3_3(x15)
69
- x17 = self.pool3(x16)
70
- x18 = self.conv4_1(x17)
71
- x19 = self.relu4_1(x18)
72
- x20 = self.conv4_2(x19)
73
- x21 = self.relu4_2(x20)
74
- x22 = self.conv4_3(x21)
75
- x23 = self.relu4_3(x22)
76
- x24 = self.pool4(x23)
77
- x25 = self.conv5_1(x24)
78
- x26 = self.relu5_1(x25)
79
- x27 = self.conv5_2(x26)
80
- x28 = self.relu5_2(x27)
81
- x29 = self.conv5_3(x28)
82
- x30 = self.relu5_3(x29)
83
- x31_preflatten = self.pool5(x30)
84
- x31 = x31_preflatten.view(x31_preflatten.size(0), -1)
85
- x32 = self.fc6(x31)
86
- x33 = self.relu6(x32)
87
- x34 = self.dropout6(x33)
88
- x35 = self.fc7(x34)
89
- x36 = self.relu7(x35)
90
- x37 = self.dropout7(x36)
91
- x38 = self.fc8(x37)
92
- return x38
93
-
94
-
95
- def vgg_face_dag(weights_path=None, **kwargs):
96
- """
97
- load imported model instance
98
-
99
- Args:
100
- weights_path (str): If set, loads model weights from the given path
101
- """
102
- model = Vgg_face_dag()
103
- if weights_path:
104
- state_dict = torch.load(weights_path)
105
- model.load_state_dict(state_dict)
106
- return model
107
-
108
-
109
- class VGGFaceFeats(Vgg_face_dag):
110
- def forward(self, x0):
111
- x1 = self.conv1_1(x0)
112
- x2 = self.relu1_1(x1)
113
- x3 = self.conv1_2(x2)
114
- x4 = self.relu1_2(x3)
115
- x5 = self.pool1(x4)
116
- x6 = self.conv2_1(x5)
117
- x7 = self.relu2_1(x6)
118
- x8 = self.conv2_2(x7)
119
- x9 = self.relu2_2(x8)
120
- x10 = self.pool2(x9)
121
- x11 = self.conv3_1(x10)
122
- x12 = self.relu3_1(x11)
123
- x13 = self.conv3_2(x12)
124
- x14 = self.relu3_2(x13)
125
- x15 = self.conv3_3(x14)
126
- x16 = self.relu3_3(x15)
127
- x17 = self.pool3(x16)
128
- x18 = self.conv4_1(x17)
129
- x19 = self.relu4_1(x18)
130
- x20 = self.conv4_2(x19)
131
- x21 = self.relu4_2(x20)
132
- x22 = self.conv4_3(x21)
133
- x23 = self.relu4_3(x22)
134
- x24 = self.pool4(x23)
135
- x25 = self.conv5_1(x24)
136
- # x26 = self.relu5_1(x25)
137
- # x27 = self.conv5_2(x26)
138
- # x28 = self.relu5_2(x27)
139
- # x29 = self.conv5_3(x28)
140
- # x30 = self.relu5_3(x29)
141
- # x31_preflatten = self.pool5(x30)
142
- # x31 = x31_preflatten.view(x31_preflatten.size(0), -1)
143
- # x32 = self.fc6(x31)
144
- # x33 = self.relu6(x32)
145
- # x34 = self.dropout6(x33)
146
- # x35 = self.fc7(x34)
147
- # x36 = self.relu7(x35)
148
- # x37 = self.dropout7(x36)
149
- # x38 = self.fc8(x37)
150
- return x1, x6, x11, x18, x25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
op/upfirdn2d_kernel.cu DELETED
@@ -1,272 +0,0 @@
1
- // Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
2
- //
3
- // This work is made available under the Nvidia Source Code License-NC.
4
- // To view a copy of this license, visit
5
- // https://nvlabs.github.io/stylegan2/license.html
6
-
7
- #include <torch/types.h>
8
-
9
- #include <ATen/ATen.h>
10
- #include <ATen/AccumulateType.h>
11
- #include <ATen/cuda/CUDAContext.h>
12
- #include <ATen/cuda/CUDAApplyUtils.cuh>
13
-
14
- #include <cuda.h>
15
- #include <cuda_runtime.h>
16
-
17
-
18
- static __host__ __device__ __forceinline__ int floor_div(int a, int b) {
19
- int c = a / b;
20
-
21
- if (c * b > a) {
22
- c--;
23
- }
24
-
25
- return c;
26
- }
27
-
28
-
29
- struct UpFirDn2DKernelParams {
30
- int up_x;
31
- int up_y;
32
- int down_x;
33
- int down_y;
34
- int pad_x0;
35
- int pad_x1;
36
- int pad_y0;
37
- int pad_y1;
38
-
39
- int major_dim;
40
- int in_h;
41
- int in_w;
42
- int minor_dim;
43
- int kernel_h;
44
- int kernel_w;
45
- int out_h;
46
- int out_w;
47
- int loop_major;
48
- int loop_x;
49
- };
50
-
51
-
52
- template <typename scalar_t, int up_x, int up_y, int down_x, int down_y, int kernel_h, int kernel_w, int tile_out_h, int tile_out_w>
53
- __global__ void upfirdn2d_kernel(scalar_t* out, const scalar_t* input, const scalar_t* kernel, const UpFirDn2DKernelParams p) {
54
- const int tile_in_h = ((tile_out_h - 1) * down_y + kernel_h - 1) / up_y + 1;
55
- const int tile_in_w = ((tile_out_w - 1) * down_x + kernel_w - 1) / up_x + 1;
56
-
57
- __shared__ volatile float sk[kernel_h][kernel_w];
58
- __shared__ volatile float sx[tile_in_h][tile_in_w];
59
-
60
- int minor_idx = blockIdx.x;
61
- int tile_out_y = minor_idx / p.minor_dim;
62
- minor_idx -= tile_out_y * p.minor_dim;
63
- tile_out_y *= tile_out_h;
64
- int tile_out_x_base = blockIdx.y * p.loop_x * tile_out_w;
65
- int major_idx_base = blockIdx.z * p.loop_major;
66
-
67
- if (tile_out_x_base >= p.out_w | tile_out_y >= p.out_h | major_idx_base >= p.major_dim) {
68
- return;
69
- }
70
-
71
- for (int tap_idx = threadIdx.x; tap_idx < kernel_h * kernel_w; tap_idx += blockDim.x) {
72
- int ky = tap_idx / kernel_w;
73
- int kx = tap_idx - ky * kernel_w;
74
- scalar_t v = 0.0;
75
-
76
- if (kx < p.kernel_w & ky < p.kernel_h) {
77
- v = kernel[(p.kernel_h - 1 - ky) * p.kernel_w + (p.kernel_w - 1 - kx)];
78
- }
79
-
80
- sk[ky][kx] = v;
81
- }
82
-
83
- for (int loop_major = 0, major_idx = major_idx_base; loop_major < p.loop_major & major_idx < p.major_dim; loop_major++, major_idx++) {
84
- for (int loop_x = 0, tile_out_x = tile_out_x_base; loop_x < p.loop_x & tile_out_x < p.out_w; loop_x++, tile_out_x += tile_out_w) {
85
- int tile_mid_x = tile_out_x * down_x + up_x - 1 - p.pad_x0;
86
- int tile_mid_y = tile_out_y * down_y + up_y - 1 - p.pad_y0;
87
- int tile_in_x = floor_div(tile_mid_x, up_x);
88
- int tile_in_y = floor_div(tile_mid_y, up_y);
89
-
90
- __syncthreads();
91
-
92
- for (int in_idx = threadIdx.x; in_idx < tile_in_h * tile_in_w; in_idx += blockDim.x) {
93
- int rel_in_y = in_idx / tile_in_w;
94
- int rel_in_x = in_idx - rel_in_y * tile_in_w;
95
- int in_x = rel_in_x + tile_in_x;
96
- int in_y = rel_in_y + tile_in_y;
97
-
98
- scalar_t v = 0.0;
99
-
100
- if (in_x >= 0 & in_y >= 0 & in_x < p.in_w & in_y < p.in_h) {
101
- v = input[((major_idx * p.in_h + in_y) * p.in_w + in_x) * p.minor_dim + minor_idx];
102
- }
103
-
104
- sx[rel_in_y][rel_in_x] = v;
105
- }
106
-
107
- __syncthreads();
108
- for (int out_idx = threadIdx.x; out_idx < tile_out_h * tile_out_w; out_idx += blockDim.x) {
109
- int rel_out_y = out_idx / tile_out_w;
110
- int rel_out_x = out_idx - rel_out_y * tile_out_w;
111
- int out_x = rel_out_x + tile_out_x;
112
- int out_y = rel_out_y + tile_out_y;
113
-
114
- int mid_x = tile_mid_x + rel_out_x * down_x;
115
- int mid_y = tile_mid_y + rel_out_y * down_y;
116
- int in_x = floor_div(mid_x, up_x);
117
- int in_y = floor_div(mid_y, up_y);
118
- int rel_in_x = in_x - tile_in_x;
119
- int rel_in_y = in_y - tile_in_y;
120
- int kernel_x = (in_x + 1) * up_x - mid_x - 1;
121
- int kernel_y = (in_y + 1) * up_y - mid_y - 1;
122
-
123
- scalar_t v = 0.0;
124
-
125
- #pragma unroll
126
- for (int y = 0; y < kernel_h / up_y; y++)
127
- #pragma unroll
128
- for (int x = 0; x < kernel_w / up_x; x++)
129
- v += sx[rel_in_y + y][rel_in_x + x] * sk[kernel_y + y * up_y][kernel_x + x * up_x];
130
-
131
- if (out_x < p.out_w & out_y < p.out_h) {
132
- out[((major_idx * p.out_h + out_y) * p.out_w + out_x) * p.minor_dim + minor_idx] = v;
133
- }
134
- }
135
- }
136
- }
137
- }
138
-
139
-
140
- torch::Tensor upfirdn2d_op(const torch::Tensor& input, const torch::Tensor& kernel,
141
- int up_x, int up_y, int down_x, int down_y,
142
- int pad_x0, int pad_x1, int pad_y0, int pad_y1) {
143
- int curDevice = -1;
144
- cudaGetDevice(&curDevice);
145
- cudaStream_t stream = at::cuda::getCurrentCUDAStream(curDevice);
146
-
147
- UpFirDn2DKernelParams p;
148
-
149
- auto x = input.contiguous();
150
- auto k = kernel.contiguous();
151
-
152
- p.major_dim = x.size(0);
153
- p.in_h = x.size(1);
154
- p.in_w = x.size(2);
155
- p.minor_dim = x.size(3);
156
- p.kernel_h = k.size(0);
157
- p.kernel_w = k.size(1);
158
- p.up_x = up_x;
159
- p.up_y = up_y;
160
- p.down_x = down_x;
161
- p.down_y = down_y;
162
- p.pad_x0 = pad_x0;
163
- p.pad_x1 = pad_x1;
164
- p.pad_y0 = pad_y0;
165
- p.pad_y1 = pad_y1;
166
-
167
- p.out_h = (p.in_h * p.up_y + p.pad_y0 + p.pad_y1 - p.kernel_h + p.down_y) / p.down_y;
168
- p.out_w = (p.in_w * p.up_x + p.pad_x0 + p.pad_x1 - p.kernel_w + p.down_x) / p.down_x;
169
-
170
- auto out = at::empty({p.major_dim, p.out_h, p.out_w, p.minor_dim}, x.options());
171
-
172
- int mode = -1;
173
-
174
- int tile_out_h;
175
- int tile_out_w;
176
-
177
- if (p.up_x == 1 && p.up_y == 1 && p.down_x == 1 && p.down_y == 1 && p.kernel_h <= 4 && p.kernel_w <= 4) {
178
- mode = 1;
179
- tile_out_h = 16;
180
- tile_out_w = 64;
181
- }
182
-
183
- if (p.up_x == 1 && p.up_y == 1 && p.down_x == 1 && p.down_y == 1 && p.kernel_h <= 3 && p.kernel_w <= 3) {
184
- mode = 2;
185
- tile_out_h = 16;
186
- tile_out_w = 64;
187
- }
188
-
189
- if (p.up_x == 2 && p.up_y == 2 && p.down_x == 1 && p.down_y == 1 && p.kernel_h <= 4 && p.kernel_w <= 4) {
190
- mode = 3;
191
- tile_out_h = 16;
192
- tile_out_w = 64;
193
- }
194
-
195
- if (p.up_x == 2 && p.up_y == 2 && p.down_x == 1 && p.down_y == 1 && p.kernel_h <= 2 && p.kernel_w <= 2) {
196
- mode = 4;
197
- tile_out_h = 16;
198
- tile_out_w = 64;
199
- }
200
-
201
- if (p.up_x == 1 && p.up_y == 1 && p.down_x == 2 && p.down_y == 2 && p.kernel_h <= 4 && p.kernel_w <= 4) {
202
- mode = 5;
203
- tile_out_h = 8;
204
- tile_out_w = 32;
205
- }
206
-
207
- if (p.up_x == 1 && p.up_y == 1 && p.down_x == 2 && p.down_y == 2 && p.kernel_h <= 2 && p.kernel_w <= 2) {
208
- mode = 6;
209
- tile_out_h = 8;
210
- tile_out_w = 32;
211
- }
212
-
213
- dim3 block_size;
214
- dim3 grid_size;
215
-
216
- if (tile_out_h > 0 && tile_out_w) {
217
- p.loop_major = (p.major_dim - 1) / 16384 + 1;
218
- p.loop_x = 1;
219
- block_size = dim3(32 * 8, 1, 1);
220
- grid_size = dim3(((p.out_h - 1) / tile_out_h + 1) * p.minor_dim,
221
- (p.out_w - 1) / (p.loop_x * tile_out_w) + 1,
222
- (p.major_dim - 1) / p.loop_major + 1);
223
- }
224
-
225
- AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "upfirdn2d_cuda", [&] {
226
- switch (mode) {
227
- case 1:
228
- upfirdn2d_kernel<scalar_t, 1, 1, 1, 1, 4, 4, 16, 64><<<grid_size, block_size, 0, stream>>>(
229
- out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
230
- );
231
-
232
- break;
233
-
234
- case 2:
235
- upfirdn2d_kernel<scalar_t, 1, 1, 1, 1, 3, 3, 16, 64><<<grid_size, block_size, 0, stream>>>(
236
- out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
237
- );
238
-
239
- break;
240
-
241
- case 3:
242
- upfirdn2d_kernel<scalar_t, 2, 2, 1, 1, 4, 4, 16, 64><<<grid_size, block_size, 0, stream>>>(
243
- out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
244
- );
245
-
246
- break;
247
-
248
- case 4:
249
- upfirdn2d_kernel<scalar_t, 2, 2, 1, 1, 2, 2, 16, 64><<<grid_size, block_size, 0, stream>>>(
250
- out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
251
- );
252
-
253
- break;
254
-
255
- case 5:
256
- upfirdn2d_kernel<scalar_t, 1, 1, 2, 2, 4, 4, 8, 32><<<grid_size, block_size, 0, stream>>>(
257
- out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
258
- );
259
-
260
- break;
261
-
262
- case 6:
263
- upfirdn2d_kernel<scalar_t, 1, 1, 2, 2, 4, 4, 8, 32><<<grid_size, block_size, 0, stream>>>(
264
- out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
265
- );
266
-
267
- break;
268
- }
269
- });
270
-
271
- return out;
272
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
optim/__init__.py DELETED
@@ -1,15 +0,0 @@
1
- from torch.optim import Adam
2
- from torch.optim.lbfgs import LBFGS
3
- from .radam import RAdam
4
-
5
-
6
- OPTIMIZER_MAP = {
7
- "adam": Adam,
8
- "radam": RAdam,
9
- "lbfgs": LBFGS,
10
- }
11
-
12
-
13
- def get_optimizer_class(optimizer_name):
14
- name = optimizer_name.lower()
15
- return OPTIMIZER_MAP[name]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
optim/radam.py DELETED
@@ -1,250 +0,0 @@
1
- import math
2
- import torch
3
- from torch.optim.optimizer import Optimizer, required
4
-
5
-
6
- class RAdam(Optimizer):
7
-
8
- def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, degenerated_to_sgd=True):
9
- if not 0.0 <= lr:
10
- raise ValueError("Invalid learning rate: {}".format(lr))
11
- if not 0.0 <= eps:
12
- raise ValueError("Invalid epsilon value: {}".format(eps))
13
- if not 0.0 <= betas[0] < 1.0:
14
- raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
15
- if not 0.0 <= betas[1] < 1.0:
16
- raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
17
-
18
- self.degenerated_to_sgd = degenerated_to_sgd
19
- if isinstance(params, (list, tuple)) and len(params) > 0 and isinstance(params[0], dict):
20
- for param in params:
21
- if 'betas' in param and (param['betas'][0] != betas[0] or param['betas'][1] != betas[1]):
22
- param['buffer'] = [[None, None, None] for _ in range(10)]
23
- defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay,
24
- buffer=[[None, None, None] for _ in range(10)])
25
- super(RAdam, self).__init__(params, defaults)
26
-
27
- def __setstate__(self, state):
28
- super(RAdam, self).__setstate__(state)
29
-
30
- def step(self, closure=None):
31
-
32
- loss = None
33
- if closure is not None:
34
- loss = closure()
35
-
36
- for group in self.param_groups:
37
-
38
- for p in group['params']:
39
- if p.grad is None:
40
- continue
41
- grad = p.grad.data.float()
42
- if grad.is_sparse:
43
- raise RuntimeError('RAdam does not support sparse gradients')
44
-
45
- p_data_fp32 = p.data.float()
46
-
47
- state = self.state[p]
48
-
49
- if len(state) == 0:
50
- state['step'] = 0
51
- state['exp_avg'] = torch.zeros_like(p_data_fp32)
52
- state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)
53
- else:
54
- state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
55
- state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32)
56
-
57
- exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
58
- beta1, beta2 = group['betas']
59
-
60
- exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
61
- exp_avg.mul_(beta1).add_(1 - beta1, grad)
62
-
63
- state['step'] += 1
64
- buffered = group['buffer'][int(state['step'] % 10)]
65
- if state['step'] == buffered[0]:
66
- N_sma, step_size = buffered[1], buffered[2]
67
- else:
68
- buffered[0] = state['step']
69
- beta2_t = beta2 ** state['step']
70
- N_sma_max = 2 / (1 - beta2) - 1
71
- N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t)
72
- buffered[1] = N_sma
73
-
74
- # more conservative since it's an approximated value
75
- if N_sma >= 5:
76
- step_size = math.sqrt(
77
- (1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (
78
- N_sma_max - 2)) / (1 - beta1 ** state['step'])
79
- elif self.degenerated_to_sgd:
80
- step_size = 1.0 / (1 - beta1 ** state['step'])
81
- else:
82
- step_size = -1
83
- buffered[2] = step_size
84
-
85
- # more conservative since it's an approximated value
86
- if N_sma >= 5:
87
- if group['weight_decay'] != 0:
88
- p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32)
89
- denom = exp_avg_sq.sqrt().add_(group['eps'])
90
- p_data_fp32.addcdiv_(-step_size * group['lr'], exp_avg, denom)
91
- p.data.copy_(p_data_fp32)
92
- elif step_size > 0:
93
- if group['weight_decay'] != 0:
94
- p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32)
95
- p_data_fp32.add_(-step_size * group['lr'], exp_avg)
96
- p.data.copy_(p_data_fp32)
97
-
98
- return loss
99
-
100
-
101
- class PlainRAdam(Optimizer):
102
-
103
- def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, degenerated_to_sgd=True):
104
- if not 0.0 <= lr:
105
- raise ValueError("Invalid learning rate: {}".format(lr))
106
- if not 0.0 <= eps:
107
- raise ValueError("Invalid epsilon value: {}".format(eps))
108
- if not 0.0 <= betas[0] < 1.0:
109
- raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
110
- if not 0.0 <= betas[1] < 1.0:
111
- raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
112
-
113
- self.degenerated_to_sgd = degenerated_to_sgd
114
- defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
115
-
116
- super(PlainRAdam, self).__init__(params, defaults)
117
-
118
- def __setstate__(self, state):
119
- super(PlainRAdam, self).__setstate__(state)
120
-
121
- def step(self, closure=None):
122
-
123
- loss = None
124
- if closure is not None:
125
- loss = closure()
126
-
127
- for group in self.param_groups:
128
-
129
- for p in group['params']:
130
- if p.grad is None:
131
- continue
132
- grad = p.grad.data.float()
133
- if grad.is_sparse:
134
- raise RuntimeError('RAdam does not support sparse gradients')
135
-
136
- p_data_fp32 = p.data.float()
137
-
138
- state = self.state[p]
139
-
140
- if len(state) == 0:
141
- state['step'] = 0
142
- state['exp_avg'] = torch.zeros_like(p_data_fp32)
143
- state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)
144
- else:
145
- state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
146
- state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32)
147
-
148
- exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
149
- beta1, beta2 = group['betas']
150
-
151
- exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
152
- exp_avg.mul_(beta1).add_(1 - beta1, grad)
153
-
154
- state['step'] += 1
155
- beta2_t = beta2 ** state['step']
156
- N_sma_max = 2 / (1 - beta2) - 1
157
- N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t)
158
-
159
- # more conservative since it's an approximated value
160
- if N_sma >= 5:
161
- if group['weight_decay'] != 0:
162
- p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32)
163
- step_size = group['lr'] * math.sqrt(
164
- (1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (
165
- N_sma_max - 2)) / (1 - beta1 ** state['step'])
166
- denom = exp_avg_sq.sqrt().add_(group['eps'])
167
- p_data_fp32.addcdiv_(-step_size, exp_avg, denom)
168
- p.data.copy_(p_data_fp32)
169
- elif self.degenerated_to_sgd:
170
- if group['weight_decay'] != 0:
171
- p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32)
172
- step_size = group['lr'] / (1 - beta1 ** state['step'])
173
- p_data_fp32.add_(-step_size, exp_avg)
174
- p.data.copy_(p_data_fp32)
175
-
176
- return loss
177
-
178
-
179
- class AdamW(Optimizer):
180
-
181
- def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, warmup=0):
182
- if not 0.0 <= lr:
183
- raise ValueError("Invalid learning rate: {}".format(lr))
184
- if not 0.0 <= eps:
185
- raise ValueError("Invalid epsilon value: {}".format(eps))
186
- if not 0.0 <= betas[0] < 1.0:
187
- raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
188
- if not 0.0 <= betas[1] < 1.0:
189
- raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
190
-
191
- defaults = dict(lr=lr, betas=betas, eps=eps,
192
- weight_decay=weight_decay, warmup=warmup)
193
- super(AdamW, self).__init__(params, defaults)
194
-
195
- def __setstate__(self, state):
196
- super(AdamW, self).__setstate__(state)
197
-
198
- def step(self, closure=None):
199
- loss = None
200
- if closure is not None:
201
- loss = closure()
202
-
203
- for group in self.param_groups:
204
-
205
- for p in group['params']:
206
- if p.grad is None:
207
- continue
208
- grad = p.grad.data.float()
209
- if grad.is_sparse:
210
- raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
211
-
212
- p_data_fp32 = p.data.float()
213
-
214
- state = self.state[p]
215
-
216
- if len(state) == 0:
217
- state['step'] = 0
218
- state['exp_avg'] = torch.zeros_like(p_data_fp32)
219
- state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)
220
- else:
221
- state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
222
- state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32)
223
-
224
- exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
225
- beta1, beta2 = group['betas']
226
-
227
- state['step'] += 1
228
-
229
- exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
230
- exp_avg.mul_(beta1).add_(1 - beta1, grad)
231
-
232
- denom = exp_avg_sq.sqrt().add_(group['eps'])
233
- bias_correction1 = 1 - beta1 ** state['step']
234
- bias_correction2 = 1 - beta2 ** state['step']
235
-
236
- if group['warmup'] > state['step']:
237
- scheduled_lr = 1e-8 + state['step'] * group['lr'] / group['warmup']
238
- else:
239
- scheduled_lr = group['lr']
240
-
241
- step_size = scheduled_lr * math.sqrt(bias_correction2) / bias_correction1
242
-
243
- if group['weight_decay'] != 0:
244
- p_data_fp32.add_(-group['weight_decay'] * scheduled_lr, p_data_fp32)
245
-
246
- p_data_fp32.addcdiv_(-step_size, exp_avg, denom)
247
-
248
- p.data.copy_(p_data_fp32)
249
-
250
- return loss
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
requirements.txt CHANGED
@@ -1,25 +1,5 @@
1
- # Torch
2
- #--find-links https://download.pytorch.org/whl/torch_stable.html
3
- #torch==1.4.0+cu100
4
- #torchvision==0.11.2+cu100
5
- #torchaudio==0.10.1+cu100
6
- #setuptools==59.5.0
7
-
8
- Pillow
9
- ninja
10
- tqdm
11
- opencv-python
12
- scikit-image
13
- numpy
14
-
15
- tensorboard
16
-
17
- # for face alignment
18
- tensorflow
19
- #keras
20
- #bz2
21
- dlib
22
- scipy
23
-
24
- matplotlib
25
- pprintpp
 
1
+ numpy==1.22.3
2
+ Pillow==9.1.0
3
+ scipy==1.8.0
4
+ torch==1.11.0
5
+ torchvision==0.12.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
scripts/download_checkpoints.sh DELETED
@@ -1,14 +0,0 @@
1
- set -exo
2
-
3
- mkdir -p checkpoint
4
- gdown https://drive.google.com/uc?id=1hWc2JLM58_PkwfLG23Q5IH3Ysj2Mo1nr -O checkpoint/e4e_ffhq_encode.pt
5
- gdown https://drive.google.com/uc?id=1hvAAql9Jo0wlmLBSHRIGrtXHcKQE-Whn -O checkpoint/stylegan2-ffhq-config-f.pt
6
- gdown https://drive.google.com/uc?id=1mbGWbjivZxMGxZqyyOHbE310aOkYe2BR -O checkpoint/vgg_face_dag.pt
7
- mkdir -p checkpoint/encoder
8
- gdown https://drive.google.com/uc?id=1ha4WXsaIpZfMHsqNLvqOPlUXsgh9VawU -O checkpoint/encoder/checkpoint_b.pt
9
- gdown https://drive.google.com/uc?id=1hfxDLujRIGU0G7pOdW9MMSBRzxZBmSKJ -O checkpoint/encoder/checkpoint_g.pt
10
- gdown https://drive.google.com/uc?id=1htekHopgxaW-MIjs6pYy7pyIK0v7Q0iS -O checkpoint/encoder/checkpoint_gb.pt
11
-
12
- pushd third_party/face_parsing
13
- ./scripts/download_checkpoints.sh
14
- popd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
scripts/install.sh DELETED
@@ -1,6 +0,0 @@
1
- # conda create -n stylegan python=3.7
2
- # conda activate stylegan
3
- conda install -c conda-forge/label/gcc7 opencv --yes
4
- conda install tensorflow-gpu=1.15 cudatoolkit=10.0 --yes
5
- conda install pytorch torchvision cudatoolkit=10.0 -c pytorch --yes
6
- pip install -r requirements.txt
 
 
 
 
 
 
 
scripts/run.sh DELETED
@@ -1,34 +0,0 @@
1
- set -x
2
-
3
- # Example command
4
- # ```
5
- # ./scripts/run.sh b "dataset/Abraham Lincoln_01.png" 0.75
6
- # ```
7
-
8
- spectral_sensitivity="$1"
9
- path="$2"
10
- blur_radius="$3"
11
-
12
-
13
- list="$(dirname "${path}")"
14
- list="$(basename "${list}")"
15
-
16
- if [ "${spectral_sensitivity}" == "b" ]; then
17
- FLAGS=(--spectral_sensitivity b --encoder_ckpt checkpoint/encoder/checkpoint_b.pt);
18
- elif [ "${spectral_sensitivity}" == "gb" ]; then
19
- FLAGS=(--spectral_sensitivity "gb" --encoder_ckpt checkpoint/encoder/checkpoint_gb.pt);
20
- else
21
- FLAGS=(--spectral_sensitivity "g" --encoder_ckpt checkpoint/encoder/checkpoint_g.pt);
22
- fi
23
-
24
- name="${path%.*}"
25
- name="${name##*/}"
26
- echo "${name}"
27
-
28
- # TODO: I did l2 or cos for contextual
29
- time python projector.py \
30
- "${path}" \
31
- --gaussian "${blur_radius}" \
32
- --log_dir "log/" \
33
- --results_dir "results/" \
34
- "${FLAGS[@]}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tools/__init__.py DELETED
File without changes
tools/data/__init__.py DELETED
File without changes
tools/data/align_images.py DELETED
@@ -1,117 +0,0 @@
1
- import argparse
2
- import json
3
- import os
4
- from os.path import join as pjoin
5
- import sys
6
- import bz2
7
- import numpy as np
8
- import cv2
9
- from tqdm import tqdm
10
- from tensorflow.keras.utils import get_file
11
- from utils.ffhq_dataset.face_alignment import image_align
12
- from utils.ffhq_dataset.landmarks_detector import LandmarksDetector
13
-
14
- LANDMARKS_MODEL_URL = 'http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2'
15
-
16
-
17
- def unpack_bz2(src_path):
18
- data = bz2.BZ2File(src_path).read()
19
- dst_path = src_path[:-4]
20
- with open(dst_path, 'wb') as fp:
21
- fp.write(data)
22
- return dst_path
23
-
24
-
25
- class SizePathMap(dict):
26
- """{size: {aligned_face_path0, aligned_face_path1, ...}, ...}"""
27
- def add_item(self, size, path):
28
- if size not in self:
29
- self[size] = set()
30
- self[size].add(path)
31
-
32
- def get_sizes(self):
33
- sizes = []
34
- for key, paths in self.items():
35
- sizes.extend([key,]*len(paths))
36
- return sizes
37
-
38
- def serialize(self):
39
- result = {}
40
- for key, paths in self.items():
41
- result[key] = list(paths)
42
- return result
43
-
44
-
45
- def main(args):
46
- landmarks_model_path = unpack_bz2(get_file('shape_predictor_68_face_landmarks.dat.bz2',
47
- LANDMARKS_MODEL_URL, cache_subdir='temp'))
48
-
49
- landmarks_detector = LandmarksDetector(landmarks_model_path)
50
- face_sizes = SizePathMap()
51
- raw_img_dir = args.raw_image_dir
52
- img_names = [n for n in os.listdir(raw_img_dir) if os.path.isfile(pjoin(raw_img_dir, n))]
53
- aligned_image_dir = args.aligned_image_dir
54
- os.makedirs(aligned_image_dir, exist_ok=True)
55
- pbar = tqdm(img_names)
56
- for img_name in pbar:
57
- pbar.set_description(img_name)
58
- if os.path.splitext(img_name)[-1] == '.txt':
59
- continue
60
- raw_img_path = os.path.join(raw_img_dir, img_name)
61
- try:
62
- for i, face_landmarks in enumerate(landmarks_detector.get_landmarks(raw_img_path), start=1):
63
- face_img_name = '%s_%02d.png' % (os.path.splitext(img_name)[0], i)
64
- aligned_face_path = os.path.join(aligned_image_dir, face_img_name)
65
-
66
- face_size = image_align(
67
- raw_img_path, aligned_face_path, face_landmarks, resize=args.resize
68
- )
69
- face_sizes.add_item(face_size, aligned_face_path)
70
- pbar.set_description(f"{img_name}: {face_size}")
71
-
72
- if args.draw:
73
- visual = LandmarksDetector.draw(cv2.imread(raw_img_path), face_landmarks)
74
- cv2.imwrite(
75
- pjoin(args.aligned_image_dir, os.path.splitext(face_img_name)[0] + "_landmarks.png"),
76
- visual
77
- )
78
- except Exception as e:
79
- print('[Error]', e, 'error happened when processing', raw_img_path)
80
-
81
- print(args.raw_image_dir, ':')
82
- sizes = face_sizes.get_sizes()
83
- results = {
84
- 'mean_size': np.mean(sizes),
85
- 'num_faces_detected': len(sizes),
86
- 'num_images': len(img_names),
87
- 'sizes': sizes,
88
- 'size_path_dict': face_sizes.serialize(),
89
- }
90
- print('\t', results)
91
- if args.out_stats is not None:
92
- os.makedirs(os.path.dirname(args.out_stats), exist_ok=True)
93
- with open(out_stats, 'w') as f:
94
- json.dump(results, f)
95
-
96
-
97
- def parse_args(args=None, namespace=None):
98
- parser = argparse.ArgumentParser(description="""
99
- Extracts and aligns all faces from images using DLib and a function from original FFHQ dataset preparation step
100
- python align_images.py /raw_images /aligned_images
101
- """
102
- )
103
- parser.add_argument('raw_image_dir')
104
- parser.add_argument('aligned_image_dir')
105
- parser.add_argument('--resize',
106
- help="True if want to resize to 1024",
107
- action='store_true')
108
- parser.add_argument('--draw',
109
- help="True if want to visualize landmarks",
110
- action='store_true')
111
- parser.add_argument('--out_stats',
112
- help="output_fn for statistics of faces", default=None)
113
- return parser.parse_args(args=args, namespace=namespace)
114
-
115
-
116
- if __name__ == "__main__":
117
- main(parse_args())
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tools/initialize.py DELETED
@@ -1,160 +0,0 @@
1
- from argparse import ArgumentParser, Namespace
2
- from typing import (
3
- List,
4
- Tuple,
5
- )
6
-
7
- import numpy as np
8
- from PIL import Image
9
- import torch
10
- from torch import nn
11
- import torch.nn.functional as F
12
- from torchvision.transforms import (
13
- Compose,
14
- Grayscale,
15
- Resize,
16
- ToTensor,
17
- )
18
-
19
- from models.encoder import Encoder
20
- from models.encoder4editing import (
21
- get_latents as get_e4e_latents,
22
- setup_model as setup_e4e_model,
23
- )
24
- from utils.misc import (
25
- optional_string,
26
- iterable_to_str,
27
- stem,
28
- )
29
-
30
-
31
-
32
- class ColorEncoderArguments:
33
- def __init__(self):
34
- parser = ArgumentParser("Encode an image via a feed-forward encoder")
35
-
36
- self.add_arguments(parser)
37
-
38
- self.parser = parser
39
-
40
- @staticmethod
41
- def add_arguments(parser: ArgumentParser):
42
- parser.add_argument("--encoder_ckpt", default=None,
43
- help="encoder checkpoint path. initialize w with encoder output if specified")
44
- parser.add_argument("--encoder_size", type=int, default=256,
45
- help="Resize to this size to pass as input to the encoder")
46
-
47
-
48
- class InitializerArguments:
49
- @classmethod
50
- def add_arguments(cls, parser: ArgumentParser):
51
- ColorEncoderArguments.add_arguments(parser)
52
- cls.add_e4e_arguments(parser)
53
- parser.add_argument("--mix_layer_range", default=[10, 18], type=int, nargs=2,
54
- help="replace layers <start> to <end> in the e4e code by the color code")
55
-
56
- parser.add_argument("--init_latent", default=None, help="path to init wp")
57
-
58
- @staticmethod
59
- def to_string(args: Namespace):
60
- return (f"init{stem(args.init_latent).lstrip('0')[:10]}" if args.init_latent
61
- else f"init({iterable_to_str(args.mix_layer_range)})")
62
- #+ optional_string(args.init_noise > 0, f"-initN{args.init_noise}")
63
-
64
- @staticmethod
65
- def add_e4e_arguments(parser: ArgumentParser):
66
- parser.add_argument("--e4e_ckpt", default='checkpoint/e4e_ffhq_encode.pt',
67
- help="e4e checkpoint path.")
68
- parser.add_argument("--e4e_size", type=int, default=256,
69
- help="Resize to this size to pass as input to the e4e")
70
-
71
-
72
-
73
- def create_color_encoder(args: Namespace):
74
- encoder = Encoder(1, args.encoder_size, 512)
75
- ckpt = torch.load(args.encoder_ckpt)
76
- encoder.load_state_dict(ckpt["model"])
77
- return encoder
78
-
79
-
80
- def transform_input(img: Image):
81
- tsfm = Compose([
82
- Grayscale(),
83
- Resize(args.encoder_size),
84
- ToTensor(),
85
- ])
86
- return tsfm(img)
87
-
88
-
89
- def encode_color(imgs: torch.Tensor, args: Namespace) -> torch.Tensor:
90
- assert args.encoder_size is not None
91
-
92
- imgs = Resize(args.encoder_size)(imgs)
93
-
94
- color_encoder = create_color_encoder(args).to(imgs.device)
95
- color_encoder.eval()
96
- with torch.no_grad():
97
- latent = color_encoder(imgs)
98
- return latent.detach()
99
-
100
-
101
- def resize(imgs: torch.Tensor, size: int) -> torch.Tensor:
102
- return F.interpolate(imgs, size=size, mode='bilinear')
103
-
104
-
105
- class Initializer(nn.Module):
106
- def __init__(self, args: Namespace):
107
- super().__init__()
108
-
109
- self.path = None
110
- if args.init_latent is not None:
111
- self.path = args.init_latent
112
- return
113
-
114
-
115
- assert args.encoder_size is not None
116
- self.color_encoder = create_color_encoder(args)
117
- self.color_encoder.eval()
118
- self.color_encoder_size = args.encoder_size
119
-
120
- self.e4e, e4e_opts = setup_e4e_model(args.e4e_ckpt)
121
- assert 'cars_' not in e4e_opts.dataset_type
122
- self.e4e.decoder.eval()
123
- self.e4e.eval()
124
- self.e4e_size = args.e4e_size
125
-
126
- self.mix_layer_range = args.mix_layer_range
127
-
128
- def encode_color(self, imgs: torch.Tensor) -> torch.Tensor:
129
- """
130
- Get the color W code
131
- """
132
- imgs = resize(imgs, self.color_encoder_size)
133
-
134
- latent = self.color_encoder(imgs)
135
-
136
- return latent
137
-
138
- def encode_shape(self, imgs: torch.Tensor) -> torch.Tensor:
139
- imgs = resize(imgs, self.e4e_size)
140
- imgs = (imgs - 0.5) / 0.5
141
- if imgs.shape[1] == 1: # 1 channel
142
- imgs = imgs.repeat(1, 3, 1, 1)
143
- return get_e4e_latents(self.e4e, imgs)
144
-
145
- def load(self, device: torch.device):
146
- latent_np = np.load(self.path)
147
- return torch.tensor(latent_np, device=device)[None, ...]
148
-
149
- def forward(self, imgs: torch.Tensor) -> torch.Tensor:
150
- if self.path is not None:
151
- return self.load(imgs.device)
152
-
153
- shape_code = self.encode_shape(imgs)
154
- color_code = self.encode_color(imgs)
155
-
156
- # style mix
157
- latent = shape_code
158
- start, end = self.mix_layer_range
159
- latent[:, start:end] = color_code
160
- return latent
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tools/match_histogram.py DELETED
@@ -1,167 +0,0 @@
1
- from argparse import (
2
- ArgumentParser,
3
- Namespace,
4
- )
5
- import os
6
- from os.path import join as pjoin
7
- from typing import Optional
8
- import sys
9
-
10
- import numpy as np
11
- import cv2
12
- from skimage import exposure
13
-
14
-
15
- # sys.path.append('Face_Detection')
16
- # from align_warp_back_multiple_dlib import match_histograms
17
-
18
-
19
- def calculate_cdf(histogram):
20
- """
21
- This method calculates the cumulative distribution function
22
- :param array histogram: The values of the histogram
23
- :return: normalized_cdf: The normalized cumulative distribution function
24
- :rtype: array
25
- """
26
- # Get the cumulative sum of the elements
27
- cdf = histogram.cumsum()
28
-
29
- # Normalize the cdf
30
- normalized_cdf = cdf / float(cdf.max())
31
-
32
- return normalized_cdf
33
-
34
-
35
- def calculate_lookup(src_cdf, ref_cdf):
36
- """
37
- This method creates the lookup table
38
- :param array src_cdf: The cdf for the source image
39
- :param array ref_cdf: The cdf for the reference image
40
- :return: lookup_table: The lookup table
41
- :rtype: array
42
- """
43
- lookup_table = np.zeros(256)
44
- lookup_val = 0
45
- for src_pixel_val in range(len(src_cdf)):
46
- lookup_val
47
- for ref_pixel_val in range(len(ref_cdf)):
48
- if ref_cdf[ref_pixel_val] >= src_cdf[src_pixel_val]:
49
- lookup_val = ref_pixel_val
50
- break
51
- lookup_table[src_pixel_val] = lookup_val
52
- return lookup_table
53
-
54
-
55
- def match_histograms(src_image, ref_image, src_mask=None, ref_mask=None):
56
- """
57
- This method matches the source image histogram to the
58
- reference signal
59
- :param image src_image: The original source image
60
- :param image ref_image: The reference image
61
- :return: image_after_matching
62
- :rtype: image (array)
63
- """
64
- # Split the images into the different color channels
65
- # b means blue, g means green and r means red
66
- src_b, src_g, src_r = cv2.split(src_image)
67
- ref_b, ref_g, ref_r = cv2.split(ref_image)
68
-
69
- def rv(im):
70
- if ref_mask is None:
71
- return im.flatten()
72
- return im[ref_mask]
73
-
74
- def sv(im):
75
- if src_mask is None:
76
- return im.flatten()
77
- return im[src_mask]
78
-
79
- # Compute the b, g, and r histograms separately
80
- # The flatten() Numpy method returns a copy of the array c
81
- # collapsed into one dimension.
82
- src_hist_blue, bin_0 = np.histogram(sv(src_b), 256, [0, 256])
83
- src_hist_green, bin_1 = np.histogram(sv(src_g), 256, [0, 256])
84
- src_hist_red, bin_2 = np.histogram(sv(src_r), 256, [0, 256])
85
- ref_hist_blue, bin_3 = np.histogram(rv(ref_b), 256, [0, 256])
86
- ref_hist_green, bin_4 = np.histogram(rv(ref_g), 256, [0, 256])
87
- ref_hist_red, bin_5 = np.histogram(rv(ref_r), 256, [0, 256])
88
-
89
- # Compute the normalized cdf for the source and reference image
90
- src_cdf_blue = calculate_cdf(src_hist_blue)
91
- src_cdf_green = calculate_cdf(src_hist_green)
92
- src_cdf_red = calculate_cdf(src_hist_red)
93
- ref_cdf_blue = calculate_cdf(ref_hist_blue)
94
- ref_cdf_green = calculate_cdf(ref_hist_green)
95
- ref_cdf_red = calculate_cdf(ref_hist_red)
96
-
97
- # Make a separate lookup table for each color
98
- blue_lookup_table = calculate_lookup(src_cdf_blue, ref_cdf_blue)
99
- green_lookup_table = calculate_lookup(src_cdf_green, ref_cdf_green)
100
- red_lookup_table = calculate_lookup(src_cdf_red, ref_cdf_red)
101
-
102
- # Use the lookup function to transform the colors of the original
103
- # source image
104
- blue_after_transform = cv2.LUT(src_b, blue_lookup_table)
105
- green_after_transform = cv2.LUT(src_g, green_lookup_table)
106
- red_after_transform = cv2.LUT(src_r, red_lookup_table)
107
-
108
- # Put the image back together
109
- image_after_matching = cv2.merge([blue_after_transform, green_after_transform, red_after_transform])
110
- image_after_matching = cv2.convertScaleAbs(image_after_matching)
111
-
112
- return image_after_matching
113
-
114
-
115
- def convert_to_BW(im, mode):
116
- if mode == "b":
117
- gray = im[..., 0]
118
- elif mode == "gb":
119
- gray = (im[..., 0].astype(float) + im[..., 1]) / 2.0
120
- else:
121
- gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
122
- gray = gray.astype(np.uint8)
123
-
124
- return np.stack([gray] * 3, axis=-1)
125
-
126
-
127
- def parse_args(args=None, namespace: Optional[Namespace] = None):
128
- parser = ArgumentParser('match histogram of src to ref')
129
- parser.add_argument('src')
130
- parser.add_argument('ref')
131
- parser.add_argument('--out', default=None, help="converted src that matches ref")
132
- parser.add_argument('--src_mask', default=None, help="mask on which to match the histogram")
133
- parser.add_argument('--ref_mask', default=None, help="mask on which to match the histogram")
134
- parser.add_argument('--spectral_sensitivity', choices=['b', 'gb', 'g'], help="match the histogram of corresponding sensitive channel(s)")
135
- parser.add_argument('--crop', type=int, default=0, help="crop the boundary to match")
136
- return parser.parse_args(args=args, namespace=namespace)
137
-
138
-
139
- def main(args):
140
- A = cv2.imread(args.ref)
141
- A = convert_to_BW(A, args.spectral_sensitivity)
142
- B = cv2.imread(args.src, 0)
143
- B = np.stack((B,) * 3, axis=-1)
144
-
145
- mask_A = cv2.resize(cv2.imread(args.ref_mask, 0), A.shape[:2][::-1],
146
- interpolation=cv2.INTER_NEAREST) > 0 if args.ref_mask else None
147
- mask_B = cv2.resize(cv2.imread(args.src_mask, 0), B.shape[:2][::-1],
148
- interpolation=cv2.INTER_NEAREST) > 0 if args.src_mask else None
149
-
150
- if args.crop > 0:
151
- c = args.crop
152
- bc = int(c / A.shape[0] * B.shape[0] + 0.5)
153
- A = A[c:-c, c:-c]
154
- B = B[bc:-bc, bc:-bc]
155
-
156
- B = match_histograms(B, A, src_mask=mask_B, ref_mask=mask_A)
157
- # B = exposure.match_histograms(B, A, multichannel=True)
158
-
159
- if args.out:
160
- os.makedirs(os.path.dirname(args.out), exist_ok=True)
161
- cv2.imwrite(args.out, B)
162
-
163
- return B
164
-
165
-
166
- if __name__ == "__main__":
167
- main(parse_args())
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tools/match_skin_histogram.py DELETED
@@ -1,67 +0,0 @@
1
- from argparse import Namespace
2
- import os
3
- from os.path import join as pjoin
4
- from typing import Optional
5
-
6
- import cv2
7
- import torch
8
-
9
- from tools import (
10
- parse_face,
11
- match_histogram,
12
- )
13
- from utils.torch_helpers import make_image
14
- from utils.misc import stem
15
-
16
-
17
- def match_skin_histogram(
18
- imgs: torch.Tensor,
19
- sibling_img: torch.Tensor,
20
- spectral_sensitivity,
21
- im_sibling_dir: str,
22
- mask_dir: str,
23
- matched_hist_fn: Optional[str] = None,
24
- normalize=None, # normalize the range of the tensor
25
- ):
26
- """
27
- Extract the skin of the input and sibling images. Create a new input image by matching
28
- its histogram to the sibling.
29
- """
30
- # TODO: Currently only allows imgs of batch size 1
31
- im_sibling_dir = os.path.abspath(im_sibling_dir)
32
- mask_dir = os.path.abspath(mask_dir)
33
-
34
- img_np = make_image(imgs)[0]
35
- sibling_np = make_image(sibling_img)[0][...,::-1]
36
-
37
- # save img, sibling
38
- os.makedirs(im_sibling_dir, exist_ok=True)
39
- im_name, sibling_name = 'input.png', 'sibling.png'
40
- cv2.imwrite(pjoin(im_sibling_dir, im_name), img_np)
41
- cv2.imwrite(pjoin(im_sibling_dir, sibling_name), sibling_np)
42
-
43
- # face parsing
44
- parse_face.main(
45
- Namespace(in_dir=im_sibling_dir, out_dir=mask_dir, include_hair=False)
46
- )
47
-
48
- # match_histogram
49
- mh_args = match_histogram.parse_args(
50
- args=[
51
- pjoin(im_sibling_dir, im_name),
52
- pjoin(im_sibling_dir, sibling_name),
53
- ],
54
- namespace=Namespace(
55
- out=matched_hist_fn if matched_hist_fn else pjoin(im_sibling_dir, "match_histogram.png"),
56
- src_mask=pjoin(mask_dir, im_name),
57
- ref_mask=pjoin(mask_dir, sibling_name),
58
- spectral_sensitivity=spectral_sensitivity,
59
- )
60
- )
61
- matched_np = match_histogram.main(mh_args) / 255.0 # [0, 1]
62
- matched = torch.FloatTensor(matched_np).permute(2, 0, 1)[None,...] #BCHW
63
-
64
- if normalize is not None:
65
- matched = normalize(matched)
66
-
67
- return matched
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tools/parse_face.py DELETED
@@ -1,55 +0,0 @@
1
- from argparse import ArgumentParser
2
- import os
3
- from os.path import join as pjoin
4
- from subprocess import run
5
-
6
- import numpy as np
7
- import cv2
8
- from tqdm import tqdm
9
-
10
-
11
- def create_skin_mask(anno_dir, mask_dir, skin_thresh=13, include_hair=False):
12
- names = os.listdir(anno_dir)
13
- names = [n for n in names if n.endswith('.png')]
14
- os.makedirs(mask_dir, exist_ok=True)
15
- for name in tqdm(names):
16
- anno = cv2.imread(pjoin(anno_dir, name), 0)
17
- mask = np.logical_and(0 < anno, anno <= skin_thresh)
18
- if include_hair:
19
- mask |= anno == 17
20
- cv2.imwrite(pjoin(mask_dir, name), mask * 255)
21
-
22
-
23
- def main(args):
24
- FACE_PARSING_DIR = 'third_party/face_parsing'
25
-
26
- main_env = os.getcwd()
27
- os.chdir(FACE_PARSING_DIR)
28
- tmp_parse_dir = pjoin(args.out_dir, 'face_parsing')
29
- cmd = [
30
- 'python',
31
- 'test.py',
32
- args.in_dir,
33
- tmp_parse_dir,
34
- ]
35
- print(' '.join(cmd))
36
- run(cmd)
37
-
38
- create_skin_mask(tmp_parse_dir, args.out_dir, include_hair=args.include_hair)
39
-
40
- os.chdir(main_env)
41
-
42
-
43
- def parse_args(args=None, namespace=None):
44
- parser = ArgumentParser("Face Parsing and generate skin (& hair) mask")
45
- parser.add_argument('in_dir')
46
- parser.add_argument('out_dir')
47
- parser.add_argument('--include_hair', action="store_true", help="include hair in the mask")
48
- return parser.parse_args(args=args, namespace=namespace)
49
-
50
-
51
- if __name__ == "__main__":
52
- main(parse_args())
53
-
54
-
55
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
torch_utils/__init__.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) SenseTime Research. All rights reserved.
2
+
3
+ # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
6
+ # and proprietary rights in and to this software, related documentation
7
+ # and any modifications thereto. Any use, reproduction, disclosure or
8
+ # distribution of this software and related documentation without an express
9
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
10
+
11
+ # empty
torch_utils/custom_ops.py ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) SenseTime Research. All rights reserved.
2
+
3
+ # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
6
+ # and proprietary rights in and to this software, related documentation
7
+ # and any modifications thereto. Any use, reproduction, disclosure or
8
+ # distribution of this software and related documentation without an express
9
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
10
+
11
+ import os
12
+ import glob
13
+ import torch
14
+ import torch.utils.cpp_extension
15
+ import importlib
16
+ import hashlib
17
+ import shutil
18
+ from pathlib import Path
19
+ import re
20
+ import uuid
21
+
22
+ from torch.utils.file_baton import FileBaton
23
+
24
+ #----------------------------------------------------------------------------
25
+ # Global options.
26
+
27
+ verbosity = 'brief' # Verbosity level: 'none', 'brief', 'full'
28
+
29
+ #----------------------------------------------------------------------------
30
+ # Internal helper funcs.
31
+
32
+ def _find_compiler_bindir():
33
+ patterns = [
34
+ 'C:/Program Files (x86)/Microsoft Visual Studio/*/Professional/VC/Tools/MSVC/*/bin/Hostx64/x64',
35
+ 'C:/Program Files (x86)/Microsoft Visual Studio/*/BuildTools/VC/Tools/MSVC/*/bin/Hostx64/x64',
36
+ 'C:/Program Files (x86)/Microsoft Visual Studio/*/Community/VC/Tools/MSVC/*/bin/Hostx64/x64',
37
+ 'C:/Program Files (x86)/Microsoft Visual Studio */vc/bin',
38
+ ]
39
+ for pattern in patterns:
40
+ matches = sorted(glob.glob(pattern))
41
+ if len(matches):
42
+ return matches[-1]
43
+ return None
44
+
45
+ def _get_mangled_gpu_name():
46
+ name = torch.cuda.get_device_name().lower()
47
+ out = []
48
+ for c in name:
49
+ if re.match('[a-z0-9_-]+', c):
50
+ out.append(c)
51
+ else:
52
+ out.append('-')
53
+ return ''.join(out)
54
+
55
+
56
+ #----------------------------------------------------------------------------
57
+ # Main entry point for compiling and loading C++/CUDA plugins.
58
+
59
+ _cached_plugins = dict()
60
+
61
+ def get_plugin(module_name, sources, **build_kwargs):
62
+ assert verbosity in ['none', 'brief', 'full']
63
+
64
+ # Already cached?
65
+ if module_name in _cached_plugins:
66
+ return _cached_plugins[module_name]
67
+
68
+ # Print status.
69
+ if verbosity == 'full':
70
+ print(f'Setting up PyTorch plugin "{module_name}"...')
71
+ elif verbosity == 'brief':
72
+ print(f'Setting up PyTorch plugin "{module_name}"... ', end='', flush=True)
73
+
74
+ try: # pylint: disable=too-many-nested-blocks
75
+ # Make sure we can find the necessary compiler binaries.
76
+ if os.name == 'nt' and os.system("where cl.exe >nul 2>nul") != 0:
77
+ compiler_bindir = _find_compiler_bindir()
78
+ if compiler_bindir is None:
79
+ raise RuntimeError(f'Could not find MSVC/GCC/CLANG installation on this computer. Check _find_compiler_bindir() in "{__file__}".')
80
+ os.environ['PATH'] += ';' + compiler_bindir
81
+
82
+ # Compile and load.
83
+ verbose_build = (verbosity == 'full')
84
+
85
+ # Incremental build md5sum trickery. Copies all the input source files
86
+ # into a cached build directory under a combined md5 digest of the input
87
+ # source files. Copying is done only if the combined digest has changed.
88
+ # This keeps input file timestamps and filenames the same as in previous
89
+ # extension builds, allowing for fast incremental rebuilds.
90
+ #
91
+ # This optimization is done only in case all the source files reside in
92
+ # a single directory (just for simplicity) and if the TORCH_EXTENSIONS_DIR
93
+ # environment variable is set (we take this as a signal that the user
94
+ # actually cares about this.)
95
+ source_dirs_set = set(os.path.dirname(source) for source in sources)
96
+ if len(source_dirs_set) == 1 and ('TORCH_EXTENSIONS_DIR' in os.environ):
97
+ all_source_files = sorted(list(x for x in Path(list(source_dirs_set)[0]).iterdir() if x.is_file()))
98
+
99
+ # Compute a combined hash digest for all source files in the same
100
+ # custom op directory (usually .cu, .cpp, .py and .h files).
101
+ hash_md5 = hashlib.md5()
102
+ for src in all_source_files:
103
+ with open(src, 'rb') as f:
104
+ hash_md5.update(f.read())
105
+ build_dir = torch.utils.cpp_extension._get_build_directory(module_name, verbose=verbose_build) # pylint: disable=protected-access
106
+ digest_build_dir = os.path.join(build_dir, hash_md5.hexdigest())
107
+
108
+ if not os.path.isdir(digest_build_dir):
109
+ os.makedirs(digest_build_dir, exist_ok=True)
110
+ baton = FileBaton(os.path.join(digest_build_dir, 'lock'))
111
+ if baton.try_acquire():
112
+ try:
113
+ for src in all_source_files:
114
+ shutil.copyfile(src, os.path.join(digest_build_dir, os.path.basename(src)))
115
+ finally:
116
+ baton.release()
117
+ else:
118
+ # Someone else is copying source files under the digest dir,
119
+ # wait until done and continue.
120
+ baton.wait()
121
+ digest_sources = [os.path.join(digest_build_dir, os.path.basename(x)) for x in sources]
122
+ torch.utils.cpp_extension.load(name=module_name, build_directory=build_dir,
123
+ verbose=verbose_build, sources=digest_sources, **build_kwargs)
124
+ else:
125
+ torch.utils.cpp_extension.load(name=module_name, verbose=verbose_build, sources=sources, **build_kwargs)
126
+ module = importlib.import_module(module_name)
127
+
128
+ except:
129
+ if verbosity == 'brief':
130
+ print('Failed!')
131
+ raise
132
+
133
+ # Print status and add to cache.
134
+ if verbosity == 'full':
135
+ print(f'Done setting up PyTorch plugin "{module_name}".')
136
+ elif verbosity == 'brief':
137
+ print('Done.')
138
+ _cached_plugins[module_name] = module
139
+ return module
140
+
141
+ #----------------------------------------------------------------------------
142
+ def get_plugin_v3(module_name, sources, headers=None, source_dir=None, **build_kwargs):
143
+ assert verbosity in ['none', 'brief', 'full']
144
+ if headers is None:
145
+ headers = []
146
+ if source_dir is not None:
147
+ sources = [os.path.join(source_dir, fname) for fname in sources]
148
+ headers = [os.path.join(source_dir, fname) for fname in headers]
149
+
150
+ # Already cached?
151
+ if module_name in _cached_plugins:
152
+ return _cached_plugins[module_name]
153
+
154
+ # Print status.
155
+ if verbosity == 'full':
156
+ print(f'Setting up PyTorch plugin "{module_name}"...')
157
+ elif verbosity == 'brief':
158
+ print(f'Setting up PyTorch plugin "{module_name}"... ', end='', flush=True)
159
+ verbose_build = (verbosity == 'full')
160
+
161
+ # Compile and load.
162
+ try: # pylint: disable=too-many-nested-blocks
163
+ # Make sure we can find the necessary compiler binaries.
164
+ if os.name == 'nt' and os.system("where cl.exe >nul 2>nul") != 0:
165
+ compiler_bindir = _find_compiler_bindir()
166
+ if compiler_bindir is None:
167
+ raise RuntimeError(f'Could not find MSVC/GCC/CLANG installation on this computer. Check _find_compiler_bindir() in "{__file__}".')
168
+ os.environ['PATH'] += ';' + compiler_bindir
169
+
170
+ # Some containers set TORCH_CUDA_ARCH_LIST to a list that can either
171
+ # break the build or unnecessarily restrict what's available to nvcc.
172
+ # Unset it to let nvcc decide based on what's available on the
173
+ # machine.
174
+ os.environ['TORCH_CUDA_ARCH_LIST'] = ''
175
+
176
+ # Incremental build md5sum trickery. Copies all the input source files
177
+ # into a cached build directory under a combined md5 digest of the input
178
+ # source files. Copying is done only if the combined digest has changed.
179
+ # This keeps input file timestamps and filenames the same as in previous
180
+ # extension builds, allowing for fast incremental rebuilds.
181
+ #
182
+ # This optimization is done only in case all the source files reside in
183
+ # a single directory (just for simplicity) and if the TORCH_EXTENSIONS_DIR
184
+ # environment variable is set (we take this as a signal that the user
185
+ # actually cares about this.)
186
+ #
187
+ # EDIT: We now do it regardless of TORCH_EXTENSIOS_DIR, in order to work
188
+ # around the *.cu dependency bug in ninja config.
189
+ #
190
+ all_source_files = sorted(sources + headers)
191
+ all_source_dirs = set(os.path.dirname(fname) for fname in all_source_files)
192
+ if len(all_source_dirs) == 1: # and ('TORCH_EXTENSIONS_DIR' in os.environ):
193
+
194
+ # Compute combined hash digest for all source files.
195
+ hash_md5 = hashlib.md5()
196
+ for src in all_source_files:
197
+ with open(src, 'rb') as f:
198
+ hash_md5.update(f.read())
199
+
200
+ # Select cached build directory name.
201
+ source_digest = hash_md5.hexdigest()
202
+ build_top_dir = torch.utils.cpp_extension._get_build_directory(module_name, verbose=verbose_build) # pylint: disable=protected-access
203
+ cached_build_dir = os.path.join(build_top_dir, f'{source_digest}-{_get_mangled_gpu_name()}')
204
+
205
+ if not os.path.isdir(cached_build_dir):
206
+ tmpdir = f'{build_top_dir}/srctmp-{uuid.uuid4().hex}'
207
+ os.makedirs(tmpdir)
208
+ for src in all_source_files:
209
+ shutil.copyfile(src, os.path.join(tmpdir, os.path.basename(src)))
210
+ try:
211
+ os.replace(tmpdir, cached_build_dir) # atomic
212
+ except OSError:
213
+ # source directory already exists, delete tmpdir and its contents.
214
+ shutil.rmtree(tmpdir)
215
+ if not os.path.isdir(cached_build_dir): raise
216
+
217
+ # Compile.
218
+ cached_sources = [os.path.join(cached_build_dir, os.path.basename(fname)) for fname in sources]
219
+ torch.utils.cpp_extension.load(name=module_name, build_directory=cached_build_dir,
220
+ verbose=verbose_build, sources=cached_sources, **build_kwargs)
221
+ else:
222
+ torch.utils.cpp_extension.load(name=module_name, verbose=verbose_build, sources=sources, **build_kwargs)
223
+
224
+ # Load.
225
+ module = importlib.import_module(module_name)
226
+
227
+ except:
228
+ if verbosity == 'brief':
229
+ print('Failed!')
230
+ raise
231
+
232
+ # Print status and add to cache dict.
233
+ if verbosity == 'full':
234
+ print(f'Done setting up PyTorch plugin "{module_name}".')
235
+ elif verbosity == 'brief':
236
+ print('Done.')
237
+ _cached_plugins[module_name] = module
238
+ return module
torch_utils/misc.py ADDED
@@ -0,0 +1,264 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) SenseTime Research. All rights reserved.
2
+
3
+ # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
6
+ # and proprietary rights in and to this software, related documentation
7
+ # and any modifications thereto. Any use, reproduction, disclosure or
8
+ # distribution of this software and related documentation without an express
9
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
10
+
11
+ import re
12
+ import contextlib
13
+ import numpy as np
14
+ import torch
15
+ import warnings
16
+ import dnnlib
17
+
18
+ #----------------------------------------------------------------------------
19
+ # Cached construction of constant tensors. Avoids CPU=>GPU copy when the
20
+ # same constant is used multiple times.
21
+
22
+ _constant_cache = dict()
23
+
24
+ def constant(value, shape=None, dtype=None, device=None, memory_format=None):
25
+ value = np.asarray(value)
26
+ if shape is not None:
27
+ shape = tuple(shape)
28
+ if dtype is None:
29
+ dtype = torch.get_default_dtype()
30
+ if device is None:
31
+ device = torch.device('cpu')
32
+ if memory_format is None:
33
+ memory_format = torch.contiguous_format
34
+
35
+ key = (value.shape, value.dtype, value.tobytes(), shape, dtype, device, memory_format)
36
+ tensor = _constant_cache.get(key, None)
37
+ if tensor is None:
38
+ tensor = torch.as_tensor(value.copy(), dtype=dtype, device=device)
39
+ if shape is not None:
40
+ tensor, _ = torch.broadcast_tensors(tensor, torch.empty(shape))
41
+ tensor = tensor.contiguous(memory_format=memory_format)
42
+ _constant_cache[key] = tensor
43
+ return tensor
44
+
45
+ #----------------------------------------------------------------------------
46
+ # Replace NaN/Inf with specified numerical values.
47
+
48
+ try:
49
+ nan_to_num = torch.nan_to_num # 1.8.0a0
50
+ except AttributeError:
51
+ def nan_to_num(input, nan=0.0, posinf=None, neginf=None, *, out=None): # pylint: disable=redefined-builtin
52
+ assert isinstance(input, torch.Tensor)
53
+ if posinf is None:
54
+ posinf = torch.finfo(input.dtype).max
55
+ if neginf is None:
56
+ neginf = torch.finfo(input.dtype).min
57
+ assert nan == 0
58
+ return torch.clamp(input.unsqueeze(0).nansum(0), min=neginf, max=posinf, out=out)
59
+
60
+ #----------------------------------------------------------------------------
61
+ # Symbolic assert.
62
+
63
+ try:
64
+ symbolic_assert = torch._assert # 1.8.0a0 # pylint: disable=protected-access
65
+ except AttributeError:
66
+ symbolic_assert = torch.Assert # 1.7.0
67
+
68
+ #----------------------------------------------------------------------------
69
+ # Context manager to suppress known warnings in torch.jit.trace().
70
+
71
+ class suppress_tracer_warnings(warnings.catch_warnings):
72
+ def __enter__(self):
73
+ super().__enter__()
74
+ warnings.simplefilter('ignore', category=torch.jit.TracerWarning)
75
+ return self
76
+
77
+ #----------------------------------------------------------------------------
78
+ # Assert that the shape of a tensor matches the given list of integers.
79
+ # None indicates that the size of a dimension is allowed to vary.
80
+ # Performs symbolic assertion when used in torch.jit.trace().
81
+
82
+ def assert_shape(tensor, ref_shape):
83
+ if tensor.ndim != len(ref_shape):
84
+ raise AssertionError(f'Wrong number of dimensions: got {tensor.ndim}, expected {len(ref_shape)}')
85
+ for idx, (size, ref_size) in enumerate(zip(tensor.shape, ref_shape)):
86
+ if ref_size is None:
87
+ pass
88
+ elif isinstance(ref_size, torch.Tensor):
89
+ with suppress_tracer_warnings(): # as_tensor results are registered as constants
90
+ symbolic_assert(torch.equal(torch.as_tensor(size), ref_size), f'Wrong size for dimension {idx}')
91
+ elif isinstance(size, torch.Tensor):
92
+ with suppress_tracer_warnings(): # as_tensor results are registered as constants
93
+ symbolic_assert(torch.equal(size, torch.as_tensor(ref_size)), f'Wrong size for dimension {idx}: expected {ref_size}')
94
+ elif size != ref_size:
95
+ raise AssertionError(f'Wrong size for dimension {idx}: got {size}, expected {ref_size}')
96
+
97
+ #----------------------------------------------------------------------------
98
+ # Function decorator that calls torch.autograd.profiler.record_function().
99
+
100
+ def profiled_function(fn):
101
+ def decorator(*args, **kwargs):
102
+ with torch.autograd.profiler.record_function(fn.__name__):
103
+ return fn(*args, **kwargs)
104
+ decorator.__name__ = fn.__name__
105
+ return decorator
106
+
107
+ #----------------------------------------------------------------------------
108
+ # Sampler for torch.utils.data.DataLoader that loops over the dataset
109
+ # indefinitely, shuffling items as it goes.
110
+
111
+ class InfiniteSampler(torch.utils.data.Sampler):
112
+ def __init__(self, dataset, rank=0, num_replicas=1, shuffle=True, seed=0, window_size=0.5):
113
+ assert len(dataset) > 0
114
+ assert num_replicas > 0
115
+ assert 0 <= rank < num_replicas
116
+ assert 0 <= window_size <= 1
117
+ super().__init__(dataset)
118
+ self.dataset = dataset
119
+ self.rank = rank
120
+ self.num_replicas = num_replicas
121
+ self.shuffle = shuffle
122
+ self.seed = seed
123
+ self.window_size = window_size
124
+
125
+ def __iter__(self):
126
+ order = np.arange(len(self.dataset))
127
+ rnd = None
128
+ window = 0
129
+ if self.shuffle:
130
+ rnd = np.random.RandomState(self.seed)
131
+ rnd.shuffle(order)
132
+ window = int(np.rint(order.size * self.window_size))
133
+
134
+ idx = 0
135
+ while True:
136
+ i = idx % order.size
137
+ if idx % self.num_replicas == self.rank:
138
+ yield order[i]
139
+ if window >= 2:
140
+ j = (i - rnd.randint(window)) % order.size
141
+ order[i], order[j] = order[j], order[i]
142
+ idx += 1
143
+
144
+ #----------------------------------------------------------------------------
145
+ # Utilities for operating with torch.nn.Module parameters and buffers.
146
+
147
+ def params_and_buffers(module):
148
+ assert isinstance(module, torch.nn.Module)
149
+ return list(module.parameters()) + list(module.buffers())
150
+
151
+ def named_params_and_buffers(module):
152
+ assert isinstance(module, torch.nn.Module)
153
+ return list(module.named_parameters()) + list(module.named_buffers())
154
+
155
+ def copy_params_and_buffers(src_module, dst_module, require_all=False):
156
+ assert isinstance(src_module, torch.nn.Module)
157
+ assert isinstance(dst_module, torch.nn.Module)
158
+ src_tensors = {name: tensor for name, tensor in named_params_and_buffers(src_module)}
159
+ for name, tensor in named_params_and_buffers(dst_module):
160
+ assert (name in src_tensors) or (not require_all)
161
+ if name in src_tensors:
162
+ tensor.copy_(src_tensors[name].detach()).requires_grad_(tensor.requires_grad)
163
+
164
+ #----------------------------------------------------------------------------
165
+ # Context manager for easily enabling/disabling DistributedDataParallel
166
+ # synchronization.
167
+
168
+ @contextlib.contextmanager
169
+ def ddp_sync(module, sync):
170
+ assert isinstance(module, torch.nn.Module)
171
+ if sync or not isinstance(module, torch.nn.parallel.DistributedDataParallel):
172
+ yield
173
+ else:
174
+ with module.no_sync():
175
+ yield
176
+
177
+ #----------------------------------------------------------------------------
178
+ # Check DistributedDataParallel consistency across processes.
179
+
180
+ def check_ddp_consistency(module, ignore_regex=None):
181
+ assert isinstance(module, torch.nn.Module)
182
+ for name, tensor in named_params_and_buffers(module):
183
+ fullname = type(module).__name__ + '.' + name
184
+ if ignore_regex is not None and re.fullmatch(ignore_regex, fullname):
185
+ continue
186
+ tensor = tensor.detach()
187
+ other = tensor.clone()
188
+ torch.distributed.broadcast(tensor=other, src=0)
189
+ assert (nan_to_num(tensor) == nan_to_num(other)).all(), fullname
190
+
191
+ #----------------------------------------------------------------------------
192
+ # Print summary table of module hierarchy.
193
+
194
+ def print_module_summary(module, inputs, max_nesting=3, skip_redundant=True):
195
+ assert isinstance(module, torch.nn.Module)
196
+ assert not isinstance(module, torch.jit.ScriptModule)
197
+ assert isinstance(inputs, (tuple, list))
198
+
199
+ # Register hooks.
200
+ entries = []
201
+ nesting = [0]
202
+ def pre_hook(_mod, _inputs):
203
+ nesting[0] += 1
204
+ def post_hook(mod, _inputs, outputs):
205
+ nesting[0] -= 1
206
+ if nesting[0] <= max_nesting:
207
+ outputs = list(outputs) if isinstance(outputs, (tuple, list)) else [outputs]
208
+ outputs = [t for t in outputs if isinstance(t, torch.Tensor)]
209
+ entries.append(dnnlib.EasyDict(mod=mod, outputs=outputs))
210
+ hooks = [mod.register_forward_pre_hook(pre_hook) for mod in module.modules()]
211
+ hooks += [mod.register_forward_hook(post_hook) for mod in module.modules()]
212
+
213
+ # Run module.
214
+ outputs = module(*inputs)
215
+ for hook in hooks:
216
+ hook.remove()
217
+
218
+ # Identify unique outputs, parameters, and buffers.
219
+ tensors_seen = set()
220
+ for e in entries:
221
+ e.unique_params = [t for t in e.mod.parameters() if id(t) not in tensors_seen]
222
+ e.unique_buffers = [t for t in e.mod.buffers() if id(t) not in tensors_seen]
223
+ e.unique_outputs = [t for t in e.outputs if id(t) not in tensors_seen]
224
+ tensors_seen |= {id(t) for t in e.unique_params + e.unique_buffers + e.unique_outputs}
225
+
226
+ # Filter out redundant entries.
227
+ if skip_redundant:
228
+ entries = [e for e in entries if len(e.unique_params) or len(e.unique_buffers) or len(e.unique_outputs)]
229
+
230
+ # Construct table.
231
+ rows = [[type(module).__name__, 'Parameters', 'Buffers', 'Output shape', 'Datatype']]
232
+ rows += [['---'] * len(rows[0])]
233
+ param_total = 0
234
+ buffer_total = 0
235
+ submodule_names = {mod: name for name, mod in module.named_modules()}
236
+ for e in entries:
237
+ name = '<top-level>' if e.mod is module else submodule_names[e.mod]
238
+ param_size = sum(t.numel() for t in e.unique_params)
239
+ buffer_size = sum(t.numel() for t in e.unique_buffers)
240
+ output_shapes = [str(list(e.outputs[0].shape)) for t in e.outputs]
241
+ output_dtypes = [str(t.dtype).split('.')[-1] for t in e.outputs]
242
+ rows += [[
243
+ name + (':0' if len(e.outputs) >= 2 else ''),
244
+ str(param_size) if param_size else '-',
245
+ str(buffer_size) if buffer_size else '-',
246
+ (output_shapes + ['-'])[0],
247
+ (output_dtypes + ['-'])[0],
248
+ ]]
249
+ for idx in range(1, len(e.outputs)):
250
+ rows += [[name + f':{idx}', '-', '-', output_shapes[idx], output_dtypes[idx]]]
251
+ param_total += param_size
252
+ buffer_total += buffer_size
253
+ rows += [['---'] * len(rows[0])]
254
+ rows += [['Total', str(param_total), str(buffer_total), '-', '-']]
255
+
256
+ # Print table.
257
+ widths = [max(len(cell) for cell in column) for column in zip(*rows)]
258
+ print()
259
+ for row in rows:
260
+ print(' '.join(cell + ' ' * (width - len(cell)) for cell, width in zip(row, widths)))
261
+ print()
262
+ return outputs
263
+
264
+ #----------------------------------------------------------------------------
torch_utils/models.py ADDED
@@ -0,0 +1,756 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) SenseTime Research. All rights reserved.
2
+
3
+ # https://github.com/rosinality/stylegan2-pytorch/blob/master/model.py
4
+
5
+ import math
6
+ import random
7
+ import functools
8
+ import operator
9
+
10
+ import torch
11
+ from torch import nn
12
+ from torch.nn import functional as F
13
+ import torch.nn.init as init
14
+ from torch.autograd import Function
15
+
16
+ from .op_edit import FusedLeakyReLU, fused_leaky_relu, upfirdn2d
17
+
18
+
19
+ class PixelNorm(nn.Module):
20
+ def __init__(self):
21
+ super().__init__()
22
+
23
+ def forward(self, input):
24
+ return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8)
25
+
26
+
27
+ def make_kernel(k):
28
+ k = torch.tensor(k, dtype=torch.float32)
29
+ if k.ndim == 1:
30
+ k = k[None, :] * k[:, None]
31
+ k /= k.sum()
32
+ return k
33
+
34
+
35
+ class Upsample(nn.Module):
36
+ def __init__(self, kernel, factor=2):
37
+ super().__init__()
38
+
39
+ self.factor = factor
40
+ kernel = make_kernel(kernel) * (factor ** 2)
41
+ self.register_buffer("kernel", kernel)
42
+
43
+ p = kernel.shape[0] - factor
44
+
45
+ pad0 = (p + 1) // 2 + factor - 1
46
+ pad1 = p // 2
47
+
48
+ self.pad = (pad0, pad1)
49
+
50
+ def forward(self, input):
51
+ out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad)
52
+ return out
53
+
54
+
55
+ class Downsample(nn.Module):
56
+ def __init__(self, kernel, factor=2):
57
+ super().__init__()
58
+
59
+ self.factor = factor
60
+ kernel = make_kernel(kernel)
61
+ self.register_buffer("kernel", kernel)
62
+
63
+ p = kernel.shape[0] - factor
64
+
65
+ pad0 = (p + 1) // 2
66
+ pad1 = p // 2
67
+
68
+ self.pad = (pad0, pad1)
69
+
70
+ def forward(self, input):
71
+ out = upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad)
72
+ return out
73
+
74
+
75
+ class Blur(nn.Module):
76
+ def __init__(self, kernel, pad, upsample_factor=1):
77
+ super().__init__()
78
+
79
+ kernel = make_kernel(kernel)
80
+
81
+ if upsample_factor > 1:
82
+ kernel = kernel * (upsample_factor ** 2)
83
+
84
+ self.register_buffer("kernel", kernel)
85
+
86
+ self.pad = pad
87
+
88
+ def forward(self, input):
89
+ out = upfirdn2d(input, self.kernel, pad=self.pad)
90
+ return out
91
+
92
+
93
+ class EqualConv2d(nn.Module):
94
+ def __init__(
95
+ self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True
96
+ ):
97
+ super().__init__()
98
+
99
+ self.weight = nn.Parameter(
100
+ torch.randn(out_channel, in_channel, kernel_size, kernel_size)
101
+ )
102
+ self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
103
+
104
+ self.stride = stride
105
+ self.padding = padding
106
+
107
+ if bias:
108
+ self.bias = nn.Parameter(torch.zeros(out_channel))
109
+
110
+ else:
111
+ self.bias = None
112
+
113
+ def forward(self, input):
114
+ out = F.conv2d(
115
+ input,
116
+ self.weight * self.scale,
117
+ bias=self.bias,
118
+ stride=self.stride,
119
+ padding=self.padding,
120
+ )
121
+ return out
122
+
123
+ def __repr__(self):
124
+ return (
125
+ f"{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},"
126
+ f" {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})"
127
+ )
128
+
129
+
130
+ class EqualLinear(nn.Module):
131
+ def __init__(
132
+ self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None
133
+ ):
134
+ super().__init__()
135
+
136
+ self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
137
+
138
+ if bias:
139
+ self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
140
+ else:
141
+ self.bias = None
142
+
143
+ self.activation = activation
144
+
145
+ self.scale = (1 / math.sqrt(in_dim)) * lr_mul
146
+ self.lr_mul = lr_mul
147
+
148
+ def forward(self, input):
149
+ if self.activation:
150
+ out = F.linear(input, self.weight * self.scale)
151
+ out = fused_leaky_relu(out, self.bias * self.lr_mul)
152
+ else:
153
+ out = F.linear(
154
+ input, self.weight * self.scale, bias=self.bias * self.lr_mul
155
+ )
156
+ return out
157
+
158
+ def __repr__(self):
159
+ return (
160
+ f"{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})"
161
+ )
162
+
163
+
164
+ class ScaledLeakyReLU(nn.Module):
165
+ def __init__(self, negative_slope=0.2):
166
+ super().__init__()
167
+ self.negative_slope = negative_slope
168
+
169
+ def forward(self, input):
170
+ out = F.leaky_relu(input, negative_slope=self.negative_slope)
171
+ return out * math.sqrt(2)
172
+
173
+
174
+ class ModulatedConv2d(nn.Module):
175
+ def __init__(
176
+ self,
177
+ in_channel,
178
+ out_channel,
179
+ kernel_size,
180
+ style_dim,
181
+ demodulate=True,
182
+ upsample=False,
183
+ downsample=False,
184
+ blur_kernel=[1, 3, 3, 1],
185
+ ):
186
+ super().__init__()
187
+
188
+ self.eps = 1e-8
189
+ self.kernel_size = kernel_size
190
+ self.in_channel = in_channel
191
+ self.out_channel = out_channel
192
+ self.upsample = upsample
193
+ self.downsample = downsample
194
+
195
+ if upsample:
196
+ factor = 2
197
+ p = (len(blur_kernel) - factor) - (kernel_size - 1)
198
+ pad0 = (p + 1) // 2 + factor - 1
199
+ pad1 = p // 2 + 1
200
+ self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor)
201
+
202
+ if downsample:
203
+ factor = 2
204
+ p = (len(blur_kernel) - factor) + (kernel_size - 1)
205
+ pad0 = (p + 1) // 2
206
+ pad1 = p // 2
207
+ self.blur = Blur(blur_kernel, pad=(pad0, pad1))
208
+
209
+ fan_in = in_channel * kernel_size ** 2
210
+ self.scale = 1 / math.sqrt(fan_in)
211
+ self.padding = kernel_size // 2
212
+ self.weight = nn.Parameter(
213
+ torch.randn(1, out_channel, in_channel, kernel_size, kernel_size)
214
+ )
215
+ self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
216
+ self.demodulate = demodulate
217
+
218
+ def __repr__(self):
219
+ return (
220
+ f"{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, "
221
+ f"upsample={self.upsample}, downsample={self.downsample})"
222
+ )
223
+
224
+ def forward(self, input, style):
225
+ batch, in_channel, height, width = input.shape
226
+
227
+ style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
228
+ weight = self.scale * self.weight * style
229
+
230
+ if self.demodulate:
231
+ demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8)
232
+ weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
233
+
234
+ weight = weight.view(
235
+ batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size
236
+ )
237
+
238
+ if self.upsample:
239
+ input = input.view(1, batch * in_channel, height, width)
240
+ weight = weight.view(
241
+ batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size
242
+ )
243
+ weight = weight.transpose(1, 2).reshape(
244
+ batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size
245
+ )
246
+ out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch)
247
+ _, _, height, width = out.shape
248
+ out = out.view(batch, self.out_channel, height, width)
249
+ out = self.blur(out)
250
+
251
+ elif self.downsample:
252
+ input = self.blur(input)
253
+ _, _, height, width = input.shape
254
+ input = input.view(1, batch * in_channel, height, width)
255
+ out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
256
+ _, _, height, width = out.shape
257
+ out = out.view(batch, self.out_channel, height, width)
258
+
259
+ else:
260
+ input = input.view(1, batch * in_channel, height, width)
261
+ out = F.conv2d(input, weight, padding=self.padding, groups=batch)
262
+ _, _, height, width = out.shape
263
+ out = out.view(batch, self.out_channel, height, width)
264
+
265
+ return out
266
+
267
+
268
+ class NoiseInjection(nn.Module):
269
+ def __init__(self):
270
+ super().__init__()
271
+ self.weight = nn.Parameter(torch.zeros(1))
272
+
273
+ def forward(self, image, noise=None):
274
+ if noise is None:
275
+ batch, _, height, width = image.shape
276
+ noise = image.new_empty(batch, 1, height, width).normal_()
277
+ return image + self.weight * noise
278
+
279
+
280
+ class ConstantInput(nn.Module):
281
+ def __init__(self, channel, size=4):
282
+ super().__init__()
283
+ self.input = nn.Parameter(torch.randn(1, channel, size, size // 2))
284
+
285
+ def forward(self, input):
286
+ batch = input.shape[0]
287
+ out = self.input.repeat(batch, 1, 1, 1)
288
+ return out
289
+
290
+
291
+ class StyledConv(nn.Module):
292
+ def __init__(
293
+ self,
294
+ in_channel,
295
+ out_channel,
296
+ kernel_size,
297
+ style_dim,
298
+ upsample=False,
299
+ blur_kernel=[1, 3, 3, 1],
300
+ demodulate=True,
301
+ ):
302
+ super().__init__()
303
+ self.conv = ModulatedConv2d(
304
+ in_channel,
305
+ out_channel,
306
+ kernel_size,
307
+ style_dim,
308
+ upsample=upsample,
309
+ blur_kernel=blur_kernel,
310
+ demodulate=demodulate,
311
+ )
312
+ self.noise = NoiseInjection()
313
+ self.activate = FusedLeakyReLU(out_channel)
314
+
315
+ def forward(self, input, style, noise=None):
316
+ out = self.conv(input, style)
317
+ out = self.noise(out, noise=noise)
318
+ out = self.activate(out)
319
+ return out
320
+
321
+
322
+ class ToRGB(nn.Module):
323
+ def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]):
324
+ super().__init__()
325
+ if upsample:
326
+ self.upsample = Upsample(blur_kernel)
327
+
328
+ self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate=False)
329
+ self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
330
+
331
+ def forward(self, input, style, skip=None):
332
+ out = self.conv(input, style)
333
+ out = out + self.bias
334
+
335
+ if skip is not None:
336
+ skip = self.upsample(skip)
337
+ out = out + skip
338
+
339
+ return out
340
+
341
+
342
+ class Generator(nn.Module):
343
+ def __init__(
344
+ self,
345
+ size,
346
+ style_dim,
347
+ n_mlp,
348
+ channel_multiplier=1,
349
+ blur_kernel=[1, 3, 3, 1],
350
+ lr_mlp=0.01,
351
+ small=False,
352
+ small_isaac=False,
353
+ ):
354
+ super().__init__()
355
+
356
+ self.size = size
357
+
358
+ if small and size > 64:
359
+ raise ValueError("small only works for sizes <= 64")
360
+
361
+ self.style_dim = style_dim
362
+ layers = [PixelNorm()]
363
+
364
+ for i in range(n_mlp):
365
+ layers.append(
366
+ EqualLinear(
367
+ style_dim, style_dim, lr_mul=lr_mlp, activation="fused_lrelu"
368
+ )
369
+ )
370
+
371
+ self.style = nn.Sequential(*layers)
372
+
373
+ if small:
374
+ self.channels = {
375
+ 4: 64 * channel_multiplier,
376
+ 8: 64 * channel_multiplier,
377
+ 16: 64 * channel_multiplier,
378
+ 32: 64 * channel_multiplier,
379
+ 64: 64 * channel_multiplier,
380
+ }
381
+ elif small_isaac:
382
+ self.channels = {4: 256, 8: 256, 16: 256, 32: 256, 64: 128, 128: 128}
383
+ else:
384
+ self.channels = {
385
+ 4: 512,
386
+ 8: 512,
387
+ 16: 512,
388
+ 32: 512,
389
+ 64: 256 * channel_multiplier,
390
+ 128: 128 * channel_multiplier,
391
+ 256: 64 * channel_multiplier,
392
+ 512: 32 * channel_multiplier,
393
+ 1024: 16 * channel_multiplier,
394
+ }
395
+
396
+ self.input = ConstantInput(self.channels[4])
397
+ self.conv1 = StyledConv(
398
+ self.channels[4], self.channels[4], 3, style_dim, blur_kernel=blur_kernel
399
+ )
400
+ self.to_rgb1 = ToRGB(self.channels[4], style_dim, upsample=False)
401
+
402
+ self.log_size = int(math.log(size, 2))
403
+ self.num_layers = (self.log_size - 2) * 2 + 1
404
+
405
+ self.convs = nn.ModuleList()
406
+ self.upsamples = nn.ModuleList()
407
+ self.to_rgbs = nn.ModuleList()
408
+ self.noises = nn.Module()
409
+
410
+ in_channel = self.channels[4]
411
+
412
+ for layer_idx in range(self.num_layers):
413
+ res = (layer_idx + 5) // 2
414
+ shape = [1, 1, 2 ** res, 2 ** res // 2]
415
+ self.noises.register_buffer(
416
+ "noise_{}".format(layer_idx), torch.randn(*shape)
417
+ )
418
+
419
+ for i in range(3, self.log_size + 1):
420
+ out_channel = self.channels[2 ** i]
421
+
422
+ self.convs.append(
423
+ StyledConv(
424
+ in_channel,
425
+ out_channel,
426
+ 3,
427
+ style_dim,
428
+ upsample=True,
429
+ blur_kernel=blur_kernel,
430
+ )
431
+ )
432
+
433
+ self.convs.append(
434
+ StyledConv(
435
+ out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel
436
+ )
437
+ )
438
+
439
+ self.to_rgbs.append(ToRGB(out_channel, style_dim))
440
+ in_channel = out_channel
441
+
442
+ self.n_latent = self.log_size * 2 - 2
443
+
444
+ def make_noise(self):
445
+ device = self.input.input.device
446
+
447
+ noises = [torch.randn(1, 1, 2 ** 2, 2 ** 2 // 2, device=device)]
448
+
449
+ for i in range(3, self.log_size + 1):
450
+ for _ in range(2):
451
+ noises.append(torch.randn(1, 1, 2 ** i, 2 ** i // 2, device=device))
452
+
453
+ return noises
454
+
455
+ def mean_latent(self, n_latent):
456
+ latent_in = torch.randn(
457
+ n_latent, self.style_dim, device=self.input.input.device
458
+ )
459
+ latent = self.style(latent_in).mean(0, keepdim=True)
460
+
461
+ return latent
462
+
463
+ def get_latent(self, input):
464
+ return self.style(input)
465
+
466
+ def forward(
467
+ self,
468
+ styles,
469
+ return_latents=False,
470
+ return_features=False,
471
+ inject_index=None,
472
+ truncation=1,
473
+ truncation_latent=None,
474
+ input_is_latent=False,
475
+ noise=None,
476
+ randomize_noise=True,
477
+ real=False,
478
+ ):
479
+ if not input_is_latent:
480
+ styles = [self.style(s) for s in styles]
481
+ if noise is None:
482
+ if randomize_noise:
483
+ noise = [None] * self.num_layers
484
+ else:
485
+ noise = [
486
+ getattr(self.noises, "noise_{}".format(i))
487
+ for i in range(self.num_layers)
488
+ ]
489
+
490
+ if truncation < 1:
491
+ # print('truncation_latent: ', truncation_latent.shape)
492
+ if not real: #if type(styles) == list:
493
+ style_t = []
494
+ for style in styles:
495
+ style_t.append(
496
+ truncation_latent + truncation * (style - truncation_latent)
497
+ ) # (-1.1162e-03-(-1.0914e-01))*0.8+(-1.0914e-01)
498
+ styles = style_t
499
+ else: # styles are latent (tensor: 1,18,512), for real PTI output
500
+ truncation_latent = truncation_latent.repeat(18,1).unsqueeze(0) # (1,512) --> (1,18,512)
501
+ styles = torch.add(truncation_latent,torch.mul(torch.sub(styles,truncation_latent),truncation))
502
+ # print('now styles after truncation : ', styles)
503
+ #if type(styles) == list and len(styles) < 2: # this if for input as list of [(1,512)]
504
+ if not real:
505
+ if len(styles) < 2:
506
+ inject_index = self.n_latent
507
+ if styles[0].ndim < 3:
508
+ latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
509
+ else:
510
+ latent = styles[0]
511
+ elif type(styles) == list:
512
+ if inject_index is None:
513
+ inject_index = 4
514
+
515
+ latent = styles[0].unsqueeze(0)
516
+ if latent.shape[1] == 1:
517
+ latent = latent.repeat(1, inject_index, 1)
518
+ else:
519
+ latent = latent[:, :inject_index, :]
520
+ latent2 = styles[1].unsqueeze(1).repeat(1, self.n_latent - inject_index, 1)
521
+ latent = torch.cat([latent, latent2], 1)
522
+ else: # input is tensor of size with torch.Size([1, 18, 512]), for real PTI output
523
+ latent = styles
524
+
525
+ # print(f'processed latent: {latent.shape}')
526
+
527
+ features = {}
528
+ out = self.input(latent)
529
+ features["out_0"] = out
530
+ out = self.conv1(out, latent[:, 0], noise=noise[0])
531
+ features["conv1_0"] = out
532
+
533
+ skip = self.to_rgb1(out, latent[:, 1])
534
+ features["skip_0"] = skip
535
+ i = 1
536
+ for conv1, conv2, noise1, noise2, to_rgb in zip(
537
+ self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs
538
+ ):
539
+ out = conv1(out, latent[:, i], noise=noise1)
540
+ features["conv1_{}".format(i)] = out
541
+ out = conv2(out, latent[:, i + 1], noise=noise2)
542
+ features["conv2_{}".format(i)] = out
543
+ skip = to_rgb(out, latent[:, i + 2], skip)
544
+ features["skip_{}".format(i)] = skip
545
+
546
+ i += 2
547
+
548
+ image = skip
549
+
550
+ if return_latents:
551
+ return image, latent
552
+ elif return_features:
553
+ return image, features
554
+ else:
555
+ return image, None
556
+
557
+
558
+ class ConvLayer(nn.Sequential):
559
+ def __init__(
560
+ self,
561
+ in_channel,
562
+ out_channel,
563
+ kernel_size,
564
+ downsample=False,
565
+ blur_kernel=[1, 3, 3, 1],
566
+ bias=True,
567
+ activate=True,
568
+ ):
569
+ layers = []
570
+
571
+ if downsample:
572
+ factor = 2
573
+ p = (len(blur_kernel) - factor) + (kernel_size - 1)
574
+ pad0 = (p + 1) // 2
575
+ pad1 = p // 2
576
+
577
+ layers.append(Blur(blur_kernel, pad=(pad0, pad1)))
578
+
579
+ stride = 2
580
+ self.padding = 0
581
+
582
+ else:
583
+ stride = 1
584
+ self.padding = kernel_size // 2
585
+
586
+ layers.append(
587
+ EqualConv2d(
588
+ in_channel,
589
+ out_channel,
590
+ kernel_size,
591
+ padding=self.padding,
592
+ stride=stride,
593
+ bias=bias and not activate,
594
+ )
595
+ )
596
+
597
+ if activate:
598
+ if bias:
599
+ layers.append(FusedLeakyReLU(out_channel))
600
+ else:
601
+ layers.append(ScaledLeakyReLU(0.2))
602
+
603
+ super().__init__(*layers)
604
+
605
+
606
+ class ResBlock(nn.Module):
607
+ def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]):
608
+ super().__init__()
609
+
610
+ self.conv1 = ConvLayer(in_channel, in_channel, 3)
611
+ self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True)
612
+
613
+ self.skip = ConvLayer(
614
+ in_channel, out_channel, 1, downsample=True, activate=False, bias=False
615
+ )
616
+
617
+ def forward(self, input):
618
+ out = self.conv1(input)
619
+ out = self.conv2(out)
620
+
621
+ skip = self.skip(input)
622
+ out = (out + skip) / math.sqrt(2)
623
+
624
+ return out
625
+
626
+
627
+ class StyleDiscriminator(nn.Module):
628
+ def __init__(
629
+ self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1], small=False
630
+ ):
631
+ super().__init__()
632
+
633
+ if small:
634
+ channels = {4: 64, 8: 64, 16: 64, 32: 64, 64: 64}
635
+
636
+ else:
637
+ channels = {
638
+ 4: 512,
639
+ 8: 512,
640
+ 16: 512,
641
+ 32: 512,
642
+ 64: 256 * channel_multiplier,
643
+ 128: 128 * channel_multiplier,
644
+ 256: 64 * channel_multiplier,
645
+ 512: 32 * channel_multiplier,
646
+ 1024: 16 * channel_multiplier,
647
+ }
648
+
649
+ convs = [ConvLayer(3, channels[size], 1)]
650
+
651
+ log_size = int(math.log(size, 2))
652
+ in_channel = channels[size]
653
+
654
+ for i in range(log_size, 2, -1):
655
+ out_channel = channels[2 ** (i - 1)]
656
+
657
+ convs.append(ResBlock(in_channel, out_channel, blur_kernel))
658
+
659
+ in_channel = out_channel
660
+
661
+ self.convs = nn.Sequential(*convs)
662
+
663
+ self.stddev_group = 4
664
+ self.stddev_feat = 1
665
+
666
+ self.final_conv = ConvLayer(in_channel + 1, channels[4], 3)
667
+ self.final_linear = nn.Sequential(
668
+ EqualLinear(channels[4] * 4 * 4, channels[4], activation="fused_lrelu"),
669
+ EqualLinear(channels[4], 1),
670
+ )
671
+
672
+
673
+ def forward(self, input):
674
+ h = input
675
+ h_list = []
676
+
677
+ for index, blocklist in enumerate(self.convs):
678
+ h = blocklist(h)
679
+ h_list.append(h)
680
+
681
+ out = h
682
+ batch, channel, height, width = out.shape
683
+ group = min(batch, self.stddev_group)
684
+ stddev = out.view(
685
+ group, -1, self.stddev_feat, channel // self.stddev_feat, height, width
686
+ )
687
+ stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8)
688
+ stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2)
689
+ stddev = stddev.repeat(group, 1, height, width)
690
+ out = torch.cat([out, stddev], 1)
691
+
692
+ out = self.final_conv(out)
693
+ h_list.append(out)
694
+
695
+ out = out.view(batch, -1)
696
+ out = self.final_linear(out)
697
+
698
+ return out, h_list
699
+
700
+
701
+ class StyleEncoder(nn.Module):
702
+ def __init__(self, size, w_dim=512):
703
+ super().__init__()
704
+
705
+ channels = {
706
+ 4: 512,
707
+ 8: 512,
708
+ 16: 512,
709
+ 32: 512,
710
+ 64: 256,
711
+ 128: 128,
712
+ 256: 64,
713
+ 512: 32,
714
+ 1024: 16
715
+ }
716
+
717
+ self.w_dim = w_dim
718
+ log_size = int(math.log(size, 2))
719
+ convs = [ConvLayer(3, channels[size], 1)]
720
+
721
+ in_channel = channels[size]
722
+ for i in range(log_size, 2, -1):
723
+ out_channel = channels[2 ** (i - 1)]
724
+ convs.append(ResBlock(in_channel, out_channel))
725
+ in_channel = out_channel
726
+
727
+ convs.append(EqualConv2d(in_channel,2*self.w_dim, 4, padding=0, bias=False))
728
+
729
+ self.convs = nn.Sequential(*convs)
730
+
731
+ def forward(self, input):
732
+ out = self.convs(input)
733
+ # return out.view(len(input), self.n_latents, self.w_dim)
734
+ reshaped = out.view(len(input), 2*self.w_dim)
735
+ return reshaped[:,:self.w_dim], reshaped[:,self.w_dim:]
736
+
737
+ def kaiming_init(m):
738
+ if isinstance(m, (nn.Linear, nn.Conv2d)):
739
+ init.kaiming_normal_(m.weight)
740
+ if m.bias is not None:
741
+ m.bias.data.fill_(0)
742
+ elif isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d)):
743
+ m.weight.data.fill_(1)
744
+ if m.bias is not None:
745
+ m.bias.data.fill_(0)
746
+
747
+
748
+ def normal_init(m):
749
+ if isinstance(m, (nn.Linear, nn.Conv2d)):
750
+ init.normal_(m.weight, 0, 0.02)
751
+ if m.bias is not None:
752
+ m.bias.data.fill_(0)
753
+ elif isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d)):
754
+ m.weight.data.fill_(1)
755
+ if m.bias is not None:
756
+ m.bias.data.fill_(0)