File size: 18,498 Bytes
6c4222e
 
 
 
 
 
 
2a12e8f
7185b90
6c4222e
 
 
 
 
08e40b6
3d7e17e
 
 
 
 
 
 
 
 
 
 
 
5e08dc0
 
 
 
 
 
5ada086
 
 
 
 
b6a069c
5bc1fa1
9619bcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6a069c
 
9619bcc
b6a069c
 
070c3b5
5bc1fa1
b6a069c
 
 
 
 
 
 
5bc1fa1
b6a069c
39188ef
5bc1fa1
 
 
9619bcc
5f6b572
 
5486599
5f6b572
8195050
9619bcc
 
 
 
 
 
 
 
 
 
 
8195050
5f6b572
8195050
 
 
 
 
 
 
 
1e1abd7
5ada086
ad3524d
6c4222e
 
 
 
 
 
 
 
 
 
00ac9d6
ad3524d
 
dc9d88e
65ba024
6c4222e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4387a40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc5db4e
 
3d7e17e
 
 
 
 
3c5a551
 
 
 
bc5db4e
3c5a551
 
 
 
6c4222e
bc5db4e
 
 
 
 
 
6c4222e
 
 
 
4387a40
 
 
6c4222e
 
 
5239a5d
 
 
 
 
c8d8aaa
 
6c4222e
ad3524d
6c4222e
 
2a12e8f
5bc1fa1
42c7f81
6c4222e
 
 
1025a0e
 
4ab6125
 
 
25ea5f9
4ab6125
ec92d28
4ab6125
 
 
 
 
 
25ea5f9
4ab6125
ec92d28
4ab6125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25ea5f9
4ab6125
ec92d28
4ab6125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e1abd7
 
b9fc3f8
 
ec92d28
1e1abd7
bde0f9b
 
 
1025a0e
6c4222e
 
3d7e17e
 
 
bde0f9b
3d7e17e
31ca0a5
3d7e17e
 
 
bde0f9b
3d7e17e
 
 
 
 
 
 
 
 
 
 
bde0f9b
3d7e17e
bde0f9b
3d7e17e
 
 
 
 
 
 
bde0f9b
3d7e17e
bde0f9b
3d7e17e
bde0f9b
3d7e17e
 
 
 
8bcbf7f
 
 
 
c441f10
8bcbf7f
 
f96f689
ea21b12
f96f689
 
b9fc3f8
40637a7
 
 
 
 
 
 
3760f4f
 
 
 
 
 
 
 
 
 
 
 
 
aba45a8
ad3524d
3760f4f
 
f0b828d
46f0366
5bc1fa1
 
e5bfcbc
 
 
 
fc5c710
 
e5bfcbc
fc5c710
5e08dc0
147f7a8
 
 
186a225
 
5bc1fa1
18ae9a3
 
 
 
186a225
 
18ae9a3
f0b828d
46f0366
147f7a8
 
186a225
 
147f7a8
6c4222e
 
e5bfcbc
bc5db4e
186a225
 
e5bfcbc
6c4222e
ad3524d
186a225
 
6c4222e
5bc1fa1
13d670f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
import gradio as gr
import torch
import os
import shutil
import requests
import subprocess
from subprocess import getoutput
import webbrowser
from huggingface_hub import snapshot_download, HfApi

api = HfApi()

hf_token = os.environ.get("HF_TOKEN_WITH_WRITE_PERMISSION")

is_shared_ui = True if "fffiloni/B-LoRa-trainer" in os.environ['SPACE_ID'] else False

is_gpu_associated = torch.cuda.is_available()

if is_gpu_associated:
    gpu_info = getoutput('nvidia-smi')
    if("A10G" in gpu_info):
        which_gpu = "A10G"
    elif("T4" in gpu_info):
        which_gpu = "T4"
    else:
        which_gpu = "CPU"

def change_training_setup(training_type):
    if training_type == "style" :
        return 1000, 500
    elif training_type == "concept" :
        return 2000, 1000

def swap_hardware(hf_token, hardware="cpu-basic"):
    hardware_url = f"https://huggingface.co/spaces/{os.environ['SPACE_ID']}/hardware"
    headers = { "authorization" : f"Bearer {hf_token}"}
    body = {'flavor': hardware}
    requests.post(hardware_url, json = body, headers=headers)

def swap_sleep_time(sleep_time):
    
    if sleep_time == "5 minutes":
        new_sleep_time = 300
    elif sleep_time == "15 minutes":
        new_sleep_time = 900
    elif sleep_time == "30 minutes":
        new_sleep_time = 1800
    elif sleep_time == "1 hour":
        new_sleep_time = 3600
    elif sleep_time == "10 hours":
        new_sleep_time = 36000
    elif sleep_time == "24 hours":
        new_sleep_time = 86400
    elif sleep_time == "48 hours":
        new_sleep_time = 172800
    elif sleep_time == "72 hours":
        new_sleep_time = 259200
    elif sleep_time == "1 week":
        new_sleep_time = 604800
    elif sleep_time == "Don't sleep":
        new_sleep_time = -1
    
    sleep_time_url = f"https://huggingface.co/api/spaces/{os.environ['SPACE_ID']}/sleeptime"
    headers = { "authorization" : f"Bearer {hf_token}"}
    body = {'seconds':new_sleep_time}
    requests.post(sleep_time_url,json=body,headers=headers)


def get_sleep_time():
    sleep_time_url = f"https://huggingface.co/api/spaces/{os.environ['SPACE_ID']}"
    headers = { "authorization" : f"Bearer {hf_token}"}
    response = requests.get(sleep_time_url,headers=headers)
    try:
        gcTimeout = response.json()['runtime']['gcTimeout']
    except:
        gcTimeout = None
    
    return gcTimeout

def check_sleep_time():
    sleep_time = get_sleep_time()
    if sleep_time is None :
        sleep_time_value = "Don't sleep"
        return sleep_time_value, gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
    
    elif sleep_time >= 3600:
        
        if sleep_time == 3600:
            sleep_time_value = "1 hour"
        elif sleep_time == 36000:
            sleep_time_value = "10 hours"
        elif sleep_time == 86400:
            sleep_time_value = "24 hours"
        elif sleep_time == 172800:
            sleep_time_value = "48 hours"
        elif sleep_time == 259200:
            sleep_time_value = "72 hours"
        elif sleep_time == 604800:
            sleep_time_value = "1 week"
        return sleep_time_value, gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
    
    else :
        if sleep_time == 300:
            sleep_time_value = "5 minutes"
        elif sleep_time == 900:
            sleep_time_value = "15 minutes"
        elif sleep_time == 1800:
            sleep_time_value = "30 minutes"
        
        return sleep_time_value, gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
    
def train_dreambooth_blora_sdxl(instance_data_dir, b_lora_trained_folder, instance_prompt, max_train_steps, checkpoint_steps):
    
    script_filename = "train_dreambooth_b-lora_sdxl.py"  # Assuming it's in the same folder

    command = [
        "accelerate",
        "launch",
        script_filename,  # Use the local script
        "--pretrained_model_name_or_path=stabilityai/stable-diffusion-xl-base-1.0",
        f"--instance_data_dir={instance_data_dir}",
        f"--output_dir={b_lora_trained_folder}",
        f"--instance_prompt='{instance_prompt}'",
        #f"--class_prompt={class_prompt}",
        f"--validation_prompt={instance_prompt} in {instance_prompt} style",
        "--num_validation_images=1",
        "--validation_epochs=500",
        "--resolution=1024",
        "--rank=64",
        "--train_batch_size=1",
        "--learning_rate=5e-5",
        "--lr_scheduler=constant",
        "--lr_warmup_steps=0",
        f"--max_train_steps={max_train_steps}",
        f"--checkpointing_steps={checkpoint_steps}",
        "--seed=0",
        "--gradient_checkpointing",
        "--use_8bit_adam",
        "--mixed_precision=fp16",
        "--push_to_hub",
        f"--hub_token={hf_token}"
    ]

    try:
        subprocess.run(command, check=True)
        print("Training is finished!")
    
    except subprocess.CalledProcessError as e:
        print(f"An error occurred: {e}")


def clear_directory(directory_path):
    # Check if the directory exists
    if os.path.exists(directory_path):
        # Iterate over all the files and directories inside the specified directory
        for filename in os.listdir(directory_path):
            file_path = os.path.join(directory_path, filename)
            try:
                # Check if it is a file or a directory and remove accordingly
                if os.path.isfile(file_path) or os.path.islink(file_path):
                    os.unlink(file_path)  # Remove the file
                elif os.path.isdir(file_path):
                    shutil.rmtree(file_path)  # Remove the directory
            except Exception as e:
                print(f'Failed to delete {file_path}. Reason: {e}')
    else:
        print(f'The directory {directory_path} does not exist.')

def get_start_info(image_path, b_lora_name, instance_prompt):
    
    if is_shared_ui:
        raise gr.Error("This Space only works in duplicated instances")

    if not is_gpu_associated:
        raise gr.Error("Please associate a T4 or A10G GPU for this Space")

    if image_path == None:
        raise gr.Error("You forgot to specify an image reference")

    if b_lora_name == "":
        raise gr.Error("You forgot to specify a name for you model")

    if instance_prompt == "":
        raise gr.Error("You forgot to specify an instance prompt")
    
    your_username = api.whoami(token=hf_token)["name"]
    
    return gr.update(visible=True, value=f"https://hf.co/{your_username}/{b_lora_name}"), gr.update(visible=True)

def main(image_path, b_lora_trained_folder, instance_prompt, training_type, training_steps):

    local_dir = "image_to_train"
    # Check if the directory exists and create it if necessary
    if not os.path.exists(local_dir):
        os.makedirs(local_dir)
    else :
        directory_to_clear = local_dir
        clear_directory(directory_to_clear)

    shutil.copy(image_path, local_dir)
    print(f"source image has been copied in {local_dir} directory")

    if training_type == "style":
        checkpoint_steps = 500
    elif training_type == "concept" :
        checkpoint_steps = 1000

    max_train_steps = training_steps
    
    train_dreambooth_blora_sdxl(local_dir, b_lora_trained_folder, instance_prompt, max_train_steps, checkpoint_steps)
    
    your_username = api.whoami(token=hf_token)["name"]
    
    #swap_hardware(hardware="cpu-basic")
    swap_sleep_time("5 minutes")
    
    return f"Done, your trained model has been stored in your models library: {your_username}/{b_lora_trained_folder}"

css = """
#col-container {max-width: 780px; margin-left: auto; margin-right: auto;}

div#warning-ready {
    background-color: #ecfdf5;
    padding: 0 16px 16px;
    margin: 20px 0;
    color: #030303!important;
}
div#warning-ready > .gr-prose > h2, div#warning-ready > .gr-prose > p {
    color: #057857!important;
}
div#warning-duplicate {
    background-color: #ebf5ff;
    padding: 0 16px 16px;
    margin: 20px 0;
    color: #030303!important;
}
div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p {
    color: #0f4592!important;
}
div#warning-duplicate strong {
    color: #0f4592;
}
p.actions {
    display: flex;
    align-items: center;
    margin: 20px 0;
}
div#warning-duplicate .actions a {
    display: inline-block;
    margin-right: 10px;
}
div#warning-setgpu {
    background-color: #fff4eb;
    padding: 0 16px 16px;
    margin: 20px 0;
    color: #030303!important;
}
div#warning-setgpu > .gr-prose > h2, div#warning-setgpu > .gr-prose > p {
    color: #92220f!important;
}
div#warning-setgpu a, div#warning-setgpu b {
    color: #91230f;
}
div#warning-setgpu p.actions > a {
    display: inline-block;
    background: #1f1f23;
    border-radius: 40px;
    padding: 6px 24px;
    color: antiquewhite;
    text-decoration: none;
    font-weight: 600;
    font-size: 1.2em;
}
div#warning-setsleeptime {
    background-color: #fff4eb;
    padding: 10px 10px;
    margin: 0!important;
    color: #030303!important;
}
.custom-color {
    color: #030303 !important;
}
"""
with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        if is_shared_ui:
            top_description = gr.HTML(f'''
                <div class="gr-prose">
                    <h2 class="custom-color"><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
                    Attention: this Space need to be duplicated to work</h2>
                    <p class="main-message custom-color">
                        To make it work, <strong>duplicate the Space</strong> and run it on your own profile using a <strong>private</strong> GPU (T4-small or A10G-small).<br />
                        A T4 costs <strong>US$0.60/h</strong>, so it should cost < US$1 to train most models.
                    </p>
                    <p class="actions custom-color">
                        <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true">
                            <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg-dark.svg" alt="Duplicate this Space" />
                        </a>
                        to start training your own B-LoRa model
                    </p>
                </div>
            ''', elem_id="warning-duplicate")
        else:
            if(is_gpu_associated):
                top_description = gr.HTML(f'''
                        <div class="gr-prose">
                            <h2 class="custom-color"><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
                            You have successfully associated a {which_gpu} GPU to the B-LoRa Training Space πŸŽ‰</h2>
                            <p class="custom-color">
                                You can now train your model! You will be billed by the minute from when you activated the GPU until when it is turned off.
                            </p> 
                        </div>
                ''', elem_id="warning-ready")
            else:
                top_description = gr.HTML(f'''
                        <div class="gr-prose">
                        <h2 class="custom-color"><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
                        You have successfully duplicated the B-LoRa Training Space πŸŽ‰</h2>
                        <p class="custom-color">There's only one step left before you can train your model: <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings" style="text-decoration: underline" target="_blank">attribute a <b>T4-small or A10G-small GPU</b> to it (via the Settings tab)</a> and run the training below.
                        You will be billed by the minute from when you activate the GPU until when it is turned off.</p> 
                        <p class="actions custom-color">
                            <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings">πŸ”₯ &nbsp; Set recommended GPU</a>
                        </p>
                        </div>
                ''', elem_id="warning-setgpu")
        gr.Markdown("""
        # B-LoRa Training UI πŸ’­

        B-LoRa training method allows to perform high quality style-content mixing and even swapping the style and content between two stylized images, by implicitly decomposing a single image into its style and content representation.
        
        [Learn more about Implicit Style-Content Separation using B-LoRA](https://b-lora.github.io/B-LoRA/)
        """)        
        with gr.Row():
            image = gr.Image(label="Image Reference", sources=["upload"], type="filepath")

            with gr.Column():

                sleep_time_message = gr.HTML('''
                    <div class="gr-prose">
                        <p>First of all, please make sure your space's sleep time value is set on long enough, so it do not fall asleep during training. </p>
                        <p>Set it to <strong>"Don't sleep"</strong> or <strong>more than 1 hour</strong> to be safe.</p>
                        <p>Don't worry, after training is finished, sleep time will be back to 5 minutes.</p>
                    </div>
                    ''', elem_id="warning-setsleeptime")

                with gr.Group():
                    current_sleep_time = gr.Dropdown(
                        label="current space sleep time",
                        choices = [
                            "Don't sleep", "5 minutes", "15 minutes", "30 minutes", "1 hour", "10 hours", "24 hours", "48 hours", "72 hours", "1 week"
                        ],
                        filterable=False
                    )
                    
                    training_type = gr.Radio(label="Training type", choices=["style", "concept"], value="style", visible=False)
                    b_lora_name = gr.Textbox(label="Name your B-LoRa model", placeholder="b_lora_trained_folder", visible=False)
                    with gr.Row():
                        instance_prompt = gr.Textbox(label="Create instance prompt", info="recommended standard B-LoRa is 'A [v]' format", placeholder="A [v42]", visible=False)
                        #class_prompt = gr.Textbox(label="Specify class prompt", placeholder="style | person | dog ", visible=False)
                    training_steps = gr.Number(label="Training steps", value=1000, interactive=False, visible=False)
                    checkpoint_step = gr.Number(label="checkpoint step", visible=False, value=500)

                    
        
        train_btn = gr.Button("Train B-LoRa", visible=False)

        with gr.Row():
            started_info = gr.Textbox(
                label="Training has started", 
                info="You can open this space's logs to monitor logs training; once training is finished, your model will be available here:",
                visible=False
            )
            status = gr.Textbox(label="status", visible=False)

    current_sleep_time.change(
        fn = swap_sleep_time,
        inputs = current_sleep_time, 
        outputs = None,
        show_api = False
    )

    demo.load(
        fn = check_sleep_time,
        inputs = None, 
        outputs = [current_sleep_time, sleep_time_message, b_lora_name, instance_prompt, training_type, training_steps, train_btn],
        show_api = False
    )
    
    training_type.change(
        fn = change_training_setup,
        inputs = [training_type],
        outputs = [training_steps, checkpoint_step],
        show_api = False
    )
    
    train_btn.click(
        fn = get_start_info,
        inputs = [image, b_lora_name, instance_prompt],
        outputs = [started_info, status],
        show_api = False
    ).then(
        fn = main,
        inputs = [image, b_lora_name, instance_prompt, training_type, training_steps],
        outputs = [status],
        show_api = False
    )
    
demo.launch(show_api=False, debug=True, show_error=True)