Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from gradio_client import Client, handle_file
|
3 |
+
|
4 |
+
def get_flux_image(prompt):
|
5 |
+
client = Client("black-forest-labs/FLUX.1-schnell")
|
6 |
+
result = client.predict(
|
7 |
+
prompt=prompt,
|
8 |
+
seed=0,
|
9 |
+
randomize_seed=True,
|
10 |
+
width=1024,
|
11 |
+
height=1024,
|
12 |
+
num_inference_steps=4,
|
13 |
+
api_name="/infer"
|
14 |
+
)
|
15 |
+
print(result)
|
16 |
+
return result[0]
|
17 |
+
|
18 |
+
def get_upscale(prompt, img_path):
|
19 |
+
client = Client("finegrain/finegrain-image-enhancer")
|
20 |
+
result = client.predict(
|
21 |
+
input_image=handle_file(img_path),
|
22 |
+
prompt=prompt,
|
23 |
+
negative_prompt="",
|
24 |
+
seed=42,
|
25 |
+
upscale_factor=2,
|
26 |
+
controlnet_scale=0.6,
|
27 |
+
controlnet_decay=1,
|
28 |
+
condition_scale=6,
|
29 |
+
tile_width=112,
|
30 |
+
tile_height=144,
|
31 |
+
denoise_strength=0.35,
|
32 |
+
num_inference_steps=18,
|
33 |
+
solver="DDIM",
|
34 |
+
api_name="/process"
|
35 |
+
)
|
36 |
+
print(result)
|
37 |
+
return result[0]
|
38 |
+
|
39 |
+
def main(prompt):
|
40 |
+
step_one_flux = get_flux_image(prompt)
|
41 |
+
step_two_upscale = get_upscale(prompt, step_one_flux)
|
42 |
+
return step_two_upscale
|
43 |
+
|
44 |
+
css = """
|
45 |
+
#col-container{
|
46 |
+
margin: 0 auto;
|
47 |
+
max-width: 1024px;
|
48 |
+
}
|
49 |
+
"""
|
50 |
+
with gr.Blocks(css=css) as demo:
|
51 |
+
with gr.Column(elem_id="col-container"):
|
52 |
+
gr.Markdown("Flux Upscaled")
|
53 |
+
prompt_in = gr.Textbox(label="Prompt")
|
54 |
+
submit_btn = gr.Button("Submit")
|
55 |
+
output_res = gr.Image(label="Result")
|
56 |
+
|
57 |
+
submit_btn.click(
|
58 |
+
fn=main,
|
59 |
+
inputs=[prompt_in],
|
60 |
+
outputs=[output_res],
|
61 |
+
|
62 |
+
)
|
63 |
+
|
64 |
+
demo.queue().launch(show_api=False, show_error=True)
|
65 |
+
|