fffiloni commited on
Commit
33ca1ea
·
1 Parent(s): 5e59719

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -2
app.py CHANGED
@@ -1,6 +1,7 @@
1
  import os
2
  import einops
3
  import gradio as gr
 
4
  import numpy as np
5
  import torch
6
  import random
@@ -116,8 +117,14 @@ def inference(input_image, prompt, a_prompt, n_prompt, denoise_steps, upscale, a
116
  except Exception as e:
117
  print(e)
118
  image = Image.new(mode="RGB", size=(512, 512))
 
 
 
119
 
120
- return image
 
 
 
121
 
122
  title = "Pixel-Aware Stable Diffusion for Real-ISR"
123
  description = "Gradio Demo for PASD Real-ISR. To use it, simply upload your image, or click one of the examples to load them."
@@ -135,7 +142,7 @@ demo = gr.Interface(
135
  gr.Slider(label="Conditioning Scale", minimum=0.5, maximum=1.5, value=1.1, step=0.1),
136
  gr.Slider(label="Classier-free Guidance", minimum=0.1, maximum=10.0, value=7.5, step=0.1),
137
  gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)],
138
- outputs=gr.Image(type="pil"),
139
  title=title,
140
  description=description,
141
  article=article).queue()
 
1
  import os
2
  import einops
3
  import gradio as gr
4
+ from gradio_imageslider import ImageSlider
5
  import numpy as np
6
  import torch
7
  import random
 
117
  except Exception as e:
118
  print(e)
119
  image = Image.new(mode="RGB", size=(512, 512))
120
+
121
+ # Convert and save the image as JPEG
122
+ image.save('result.jpg', 'JPEG')
123
 
124
+ # Convert and save the image as JPEG
125
+ input_image.save('input.jpg', 'JPEG')
126
+
127
+ return image, ("input.jpg", "result.jpg")
128
 
129
  title = "Pixel-Aware Stable Diffusion for Real-ISR"
130
  description = "Gradio Demo for PASD Real-ISR. To use it, simply upload your image, or click one of the examples to load them."
 
142
  gr.Slider(label="Conditioning Scale", minimum=0.5, maximum=1.5, value=1.1, step=0.1),
143
  gr.Slider(label="Classier-free Guidance", minimum=0.1, maximum=10.0, value=7.5, step=0.1),
144
  gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)],
145
+ outputs=[gr.Image(type="pil"), ImageSlider(position=0.5)],
146
  title=title,
147
  description=description,
148
  article=article).queue()