Spaces:
Sleeping
Sleeping
File size: 15,180 Bytes
1fcccb4 8d74f2f 2f22a68 1fcccb4 2f22a68 a575d82 69458a9 7da6689 1fcccb4 7da6689 0fae3db 7da6689 2f22a68 69458a9 917391d 0fae3db 8d74f2f 1fcccb4 917391d 1fcccb4 917391d 22d11eb 917391d 25f49a4 917391d dd8f929 1fcccb4 8d74f2f 1fcccb4 2f22a68 a575d82 28a5c9e a575d82 4a902da 2f22a68 69458a9 117ba61 0fae3db dd8f929 917391d 25f49a4 917391d 25f49a4 fefc151 1fcccb4 f65cdf1 8d74f2f f65cdf1 22d11eb 1fcccb4 dd8f929 1fcccb4 dd8f929 0fae3db 69458a9 dd8f929 69458a9 2f22a68 a575d82 67611b7 8d74f2f 1fcccb4 69fac63 9bd0658 69fac63 239dc60 f351c05 9bd0658 1fcccb4 9bd0658 3d05192 561f681 dd8f929 561f681 3d05192 9bd0658 3d05192 9bd0658 3d05192 9bd0658 a575d82 9bd0658 1fcccb4 9bd0658 1fcccb4 9bd0658 3d05192 8d74f2f dd8f929 3d05192 9bd0658 8d74f2f af0c694 9bd0658 8d74f2f 9bd0658 1fcccb4 67611b7 8d74f2f 3d05192 9bd0658 22d11eb 3d05192 9bd0658 22d11eb 3d05192 9bd0658 3d05192 1fcccb4 2f22a68 62a24fb 08fbc70 25f49a4 1fcccb4 08fbc70 0589fd4 08fbc70 1fcccb4 dd8f929 28a5c9e 117ba61 08fbc70 48a11d1 08fbc70 48a11d1 0fae3db 117ba61 0fae3db 08fbc70 d9cb349 08fbc70 d9cb349 08fbc70 7a1fd8b 08fbc70 1fcccb4 08fbc70 117ba61 08fbc70 1fcccb4 917391d 1fcccb4 917391d 25f49a4 1fcccb4 08fbc70 2f22a68 0589fd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
import torch
import gc
import gradio as gr
from main import setup, execute_task
from arguments import parse_args
import os
import shutil
import glob
import time
import threading
import argparse
def list_iter_images(save_dir):
# Specify the image extensions you want to search for
image_extensions = ['jpg', 'jpeg', 'png', 'gif', 'bmp'] # Add more if needed
# Create a list to store the image file paths
image_paths = []
# Iterate through the specified image extensions and get the file paths
for ext in image_extensions:
# Use glob to find all image files with the given extension
image_paths.extend(glob.glob(os.path.join(save_dir, f'*.{ext}')))
# Now image_paths contains the list of all image file paths
#print(image_paths)
return image_paths
def clean_dir(save_dir):
# Check if the directory exists
if os.path.exists(save_dir):
# Check if the directory contains any files
if len(os.listdir(save_dir)) > 0:
# If it contains files, delete all files in the directory
for filename in os.listdir(save_dir):
file_path = os.path.join(save_dir, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path) # Remove file or symbolic link
elif os.path.isdir(file_path):
shutil.rmtree(file_path) # Remove directory and its contents
except Exception as e:
print(f"Failed to delete {file_path}. Reason: {e}")
print(f"All files in {save_dir} have been deleted.")
else:
print(f"{save_dir} exists but is empty.")
else:
print(f"{save_dir} does not exist.")
def start_over(gallery_state):
torch.cuda.empty_cache() # Free up cached memory
gc.collect()
if gallery_state is not None:
gallery_state = None
return gallery_state, None, None, gr.update(visible=False)
def setup_model(loaded_model_setup, prompt, model, seed, num_iterations, enable_hps, hps_w, enable_imagereward, imgrw_w, enable_pickscore, pcks_w, enable_clip, clip_w, learning_rate, progress=gr.Progress(track_tqdm=True)):
gr.Info(f"Loading {model} model ...")
if prompt is None or prompt == "":
raise gr.Error("You forgot to provide a prompt !")
print(f"LOADED_MODEL SETUP: {loaded_model_setup}")
"""Clear CUDA memory before starting the training."""
torch.cuda.empty_cache() # Free up cached memory
gc.collect()
# Set up arguments
args = parse_args()
args.task = "single"
args.prompt = prompt
args.model = model
args.seed = seed
args.n_iters = num_iterations
args.lr = learning_rate
args.cache_dir = "./HF_model_cache"
args.save_dir = "./outputs"
args.save_all_images = True
if enable_hps is True:
args.disable_hps = False
args.hps_weighting = hps_w
if enable_imagereward is True:
args.disable_imagereward = False
args.imagereward_weighting = imgrw_w
if enable_pickscore is True:
args.disable_pickscore = False
args.pickscore_weighting = pcks_w
if enable_clip is True:
args.disable_clip = False
args.clip_weighting = clip_w
if model == "flux":
args.cpu_offloading = True
args.enable_multi_apply= True
args.multi_step_model = "flux"
# Check if args are the same as the loaded_model_setup except for the prompt
if loaded_model_setup and hasattr(loaded_model_setup[0], '__dict__'):
previous_args = loaded_model_setup[0]
# Exclude 'prompt' from comparison
new_args_dict = {k: v for k, v in args.__dict__.items() if k != 'prompt'}
prev_args_dict = {k: v for k, v in previous_args.__dict__.items() if k != 'prompt'}
if new_args_dict == prev_args_dict:
# If the arguments (excluding prompt) are the same, reuse the loaded setup
print(f"Arguments (excluding prompt) are the same, reusing loaded setup for {model} model.")
return f"{model} model already loaded with the same configuration.", loaded_model_setup
# If other args differ, proceed with the setup
try:
args, trainer, device, dtype, shape, enable_grad, multi_apply_fn, settings = setup(args, loaded_model_setup)
new_loaded_setup = [args, trainer, device, dtype, shape, enable_grad, multi_apply_fn, settings]
return f"{model} model loaded succesfully !", new_loaded_setup
except Exception as e:
print(f"Unexpected Error: {e}")
return f"Something went wrong with {model} loading: {e}", None
def generate_image(setup_args, num_iterations):
torch.cuda.empty_cache() # Free up cached memory
gc.collect()
gr.Info(f"Executing iterations task ...")
args = setup_args[0]
trainer = setup_args[1]
device = setup_args[2]
dtype = setup_args[3]
shape = setup_args[4]
enable_grad = setup_args[5]
multi_apply_fn = setup_args[6]
settings = setup_args[7]
print(f"SETTINGS: {settings}")
save_dir = f"{args.save_dir}/{args.task}/{settings}/{args.prompt[:150]}"
clean_dir(save_dir)
try:
torch.cuda.empty_cache() # Free up cached memory
gc.collect()
steps_completed = []
result_container = {"best_image": None, "total_init_rewards": None, "total_best_rewards": None}
error_status = {"error_occurred": False} # Shared dictionary to track error status
thread_status = {"running": False} # Track whether a thread is already running
def progress_callback(step):
# Limit redundant prints by checking the step number
if not steps_completed or step > steps_completed[-1]:
steps_completed.append(step)
print(f"Progress: Step {step} completed.")
def run_main():
thread_status["running"] = True # Mark thread as running
try:
execute_task(
args, trainer, device, dtype, shape, enable_grad, multi_apply_fn, settings, progress_callback
)
except torch.cuda.OutOfMemoryError as e:
print(f"CUDA Out of Memory Error: {e}")
error_status["error_occurred"] = True
except RuntimeError as e:
if 'out of memory' in str(e):
print(f"Runtime Error: {e}")
error_status["error_occurred"] = True
else:
raise
finally:
thread_status["running"] = False # Mark thread as completed
if not thread_status["running"]: # Ensure no other thread is running
main_thread = threading.Thread(target=run_main)
main_thread.start()
last_step_yielded = 0
while main_thread.is_alive() and not error_status["error_occurred"]:
# Check if new steps have been completed
if steps_completed and steps_completed[-1] > last_step_yielded:
last_step_yielded = steps_completed[-1]
png_number = last_step_yielded - 1
# Get the image for this step
image_path = os.path.join(save_dir, f"{png_number}.png")
if os.path.exists(image_path):
yield (image_path, f"Iteration {last_step_yielded}/{num_iterations} - Image saved", None)
else:
yield (None, f"Iteration {last_step_yielded}/{num_iterations} - Image not found", None)
else:
time.sleep(0.1) # Sleep to prevent busy waiting
if error_status["error_occurred"]:
torch.cuda.empty_cache() # Free up cached memory
gc.collect()
yield (None, "CUDA out of memory. Please reduce your batch size or image resolution.", None)
else:
main_thread.join() # Ensure thread completion
final_image_path = os.path.join(save_dir, "best_image.png")
if os.path.exists(final_image_path):
iter_images = list_iter_images(save_dir)
torch.cuda.empty_cache() # Free up cached memory
gc.collect()
time.sleep(0.5)
yield (final_image_path, f"Final image saved at {final_image_path}", iter_images)
else:
torch.cuda.empty_cache() # Free up cached memory
gc.collect()
yield (None, "Image generation completed, but no final image was found.", None)
torch.cuda.empty_cache() # Free up cached memory
gc.collect()
except torch.cuda.OutOfMemoryError as e:
print(f"Global CUDA Out of Memory Error: {e}")
yield (None, f"{e}", None)
except RuntimeError as e:
if 'out of memory' in str(e):
print(f"Runtime Error: {e}")
yield (None, f"{e}", None)
else:
yield (None, f"An error occurred: {str(e)}", None)
except Exception as e:
print(f"Unexpected Error: {e}")
yield (None, f"An unexpected error occurred: {str(e)}", None)
def show_gallery_output(gallery_state):
if gallery_state is not None:
return gr.update(value=gallery_state, visible=True)
else:
return gr.update(value=None, visible=False)
# Create Gradio interface
title="# ReNO: Enhancing One-step Text-to-Image Models through Reward-based Noise Optimization"
description="Enter a prompt to generate an image using ReNO. Adjust the model and parameters as needed."
css="""
#model-status-id{
height: 126px;
}
#model-status-id .progress-text{
font-size: 10px!important;
}
#model-status-id .progress-level-inner{
font-size: 8px!important;
}
"""
with gr.Blocks(css=css, analytics_enabled=False) as demo:
loaded_model_setup = gr.State()
gallery_state = gr.State()
with gr.Column():
gr.Markdown(title)
gr.Markdown(description)
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href='https://github.com/ExplainableML/ReNO'>
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href='https://arxiv.org/abs/2406.04312v1'>
<img src='https://img.shields.io/badge/Paper-Arxiv-red'>
</a>
</div>
""")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt")
with gr.Row():
chosen_model = gr.Dropdown(["sd-turbo", "sdxl-turbo", "pixart", "hyper-sd", "flux"], label="Model", value="sd-turbo")
seed = gr.Number(label="seed", value=0)
model_status = gr.Textbox(label="model status", visible=True, elem_id="model-status-id")
with gr.Row():
n_iter = gr.Slider(minimum=10, maximum=100, step=10, value=10, label="Number of Iterations")
learning_rate = gr.Slider(minimum=0.1, maximum=10.0, step=0.1, value=5.0, label="Learning Rate")
with gr.Accordion("Advanced Settings", open=True):
with gr.Column():
with gr.Row():
enable_hps = gr.Checkbox(label="HPS ON", value=False, scale=1)
hps_w = gr.Slider(label="HPS weight", step=0.1, minimum=0.0, maximum=10.0, value=5.0, interactive=False, scale=3)
with gr.Row():
enable_imagereward = gr.Checkbox(label="ImageReward ON", value=False, scale=1)
imgrw_w = gr.Slider(label="ImageReward weight", step=0.1, minimum=0, maximum=5.0, value=1.0, interactive=False, scale=3)
with gr.Row():
enable_pickscore = gr.Checkbox(label="PickScore ON", value=False, scale=1)
pcks_w = gr.Slider(label="PickScore weight", step=0.01, minimum=0, maximum=5.0, value=0.05, interactive=False, scale=3)
with gr.Row():
enable_clip = gr.Checkbox(label="CLIP ON", value=False, scale=1)
clip_w = gr.Slider(label="CLIP weight", step=0.01, minimum=0, maximum=0.1, value=0.01, interactive=False, scale=3)
submit_btn = gr.Button("Submit")
gr.Examples(
examples = [
"A red dog and a green cat",
"A pink elephant and a grey cow",
"A toaster riding a bike",
"Dwayne Johnson depicted as a philosopher king in an academic painting by Greg Rutkowski",
"A curious, orange fox and a fluffy, white rabbit, playing together in a lush, green meadow filled with yellow dandelions",
"An epic oil painting: a red portal infront of a cityscape, a solitary figure, and a colorful sky over snowy mountains"
],
inputs = [prompt]
)
with gr.Column():
output_image = gr.Image(type="filepath", label="Best Generated Image")
status = gr.Textbox(label="Status")
iter_gallery = gr.Gallery(label="Iterations", columns=4, visible=False)
def allow_weighting(weight_type):
if weight_type is True:
return gr.update(interactive=True)
else:
return gr.update(interactive=False)
enable_hps.change(
fn = allow_weighting,
inputs = [enable_hps],
outputs = [hps_w],
queue = False
)
enable_imagereward.change(
fn = allow_weighting,
inputs = [enable_imagereward],
outputs = [imgrw_w],
queue = False
)
enable_pickscore.change(
fn = allow_weighting,
inputs = [enable_pickscore],
outputs = [pcks_w],
queue = False
)
enable_clip.change(
fn = allow_weighting,
inputs = [enable_clip],
outputs = [clip_w],
queue = False
)
submit_btn.click(
fn = start_over,
inputs =[gallery_state],
outputs = [gallery_state, output_image, status, iter_gallery]
).then(
fn = setup_model,
inputs = [loaded_model_setup, prompt, chosen_model, seed, n_iter, enable_hps, hps_w, enable_imagereward, imgrw_w, enable_pickscore, pcks_w, enable_clip, clip_w, learning_rate],
outputs = [model_status, loaded_model_setup] # Load the new setup into the state
).then(
fn = generate_image,
inputs = [loaded_model_setup, n_iter],
outputs = [output_image, status, gallery_state]
).then(
fn = show_gallery_output,
inputs = [gallery_state],
outputs = iter_gallery
)
# Launch the app
demo.queue().launch(show_error=True, show_api=False) |