File size: 15,180 Bytes
1fcccb4
8d74f2f
2f22a68
1fcccb4
2f22a68
a575d82
69458a9
7da6689
1fcccb4
 
 
 
 
7da6689
 
 
 
 
 
 
 
 
 
 
 
 
 
0fae3db
7da6689
 
2f22a68
69458a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
917391d
0fae3db
8d74f2f
1fcccb4
 
917391d
1fcccb4
917391d
22d11eb
917391d
25f49a4
 
917391d
 
dd8f929
1fcccb4
 
8d74f2f
1fcccb4
2f22a68
 
 
 
a575d82
28a5c9e
a575d82
 
4a902da
2f22a68
 
69458a9
117ba61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fae3db
dd8f929
 
 
 
 
917391d
 
 
 
 
 
 
 
 
 
 
 
 
 
25f49a4
917391d
 
 
25f49a4
 
 
fefc151
1fcccb4
 
f65cdf1
8d74f2f
f65cdf1
22d11eb
 
1fcccb4
 
 
 
 
 
dd8f929
1fcccb4
dd8f929
0fae3db
69458a9
dd8f929
69458a9
2f22a68
a575d82
67611b7
8d74f2f
1fcccb4
 
69fac63
9bd0658
69fac63
239dc60
f351c05
 
 
 
9bd0658
1fcccb4
9bd0658
3d05192
561f681
dd8f929
561f681
3d05192
9bd0658
 
3d05192
 
9bd0658
 
3d05192
9bd0658
 
 
a575d82
9bd0658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fcccb4
9bd0658
1fcccb4
9bd0658
3d05192
8d74f2f
dd8f929
3d05192
9bd0658
 
 
 
 
8d74f2f
af0c694
9bd0658
 
 
8d74f2f
9bd0658
1fcccb4
67611b7
8d74f2f
3d05192
 
9bd0658
22d11eb
3d05192
 
9bd0658
22d11eb
3d05192
 
 
9bd0658
3d05192
1fcccb4
 
 
 
 
 
2f22a68
 
62a24fb
08fbc70
 
25f49a4
 
 
 
 
 
 
 
 
 
 
 
 
1fcccb4
 
08fbc70
 
 
0589fd4
 
 
 
 
 
 
 
 
 
08fbc70
 
 
 
1fcccb4
dd8f929
28a5c9e
117ba61
 
08fbc70
 
48a11d1
08fbc70
 
48a11d1
0fae3db
117ba61
 
 
 
 
 
 
 
 
 
 
 
0fae3db
08fbc70
 
 
 
d9cb349
08fbc70
d9cb349
 
 
 
08fbc70
 
 
 
 
7a1fd8b
08fbc70
1fcccb4
08fbc70
117ba61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08fbc70
1fcccb4
917391d
 
1fcccb4
 
917391d
25f49a4
1fcccb4
 
 
 
 
 
 
 
08fbc70
2f22a68
 
0589fd4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import torch
import gc
import gradio as gr
from main import setup, execute_task
from arguments import parse_args
import os
import shutil
import glob
import time
import threading
import argparse



def list_iter_images(save_dir):
    # Specify the image extensions you want to search for
    image_extensions = ['jpg', 'jpeg', 'png', 'gif', 'bmp']  # Add more if needed

    # Create a list to store the image file paths
    image_paths = []

    # Iterate through the specified image extensions and get the file paths
    for ext in image_extensions:
        # Use glob to find all image files with the given extension
        image_paths.extend(glob.glob(os.path.join(save_dir, f'*.{ext}')))

    # Now image_paths contains the list of all image file paths
    #print(image_paths)

    return image_paths

def clean_dir(save_dir):
    # Check if the directory exists
    if os.path.exists(save_dir):
        # Check if the directory contains any files
        if len(os.listdir(save_dir)) > 0:
            # If it contains files, delete all files in the directory
            for filename in os.listdir(save_dir):
                file_path = os.path.join(save_dir, filename)
                try:
                    if os.path.isfile(file_path) or os.path.islink(file_path):
                        os.unlink(file_path)  # Remove file or symbolic link
                    elif os.path.isdir(file_path):
                        shutil.rmtree(file_path)  # Remove directory and its contents
                except Exception as e:
                    print(f"Failed to delete {file_path}. Reason: {e}")
            print(f"All files in {save_dir} have been deleted.")
        else:
            print(f"{save_dir} exists but is empty.")
    else:
        print(f"{save_dir} does not exist.")

def start_over(gallery_state):
    torch.cuda.empty_cache()  # Free up cached memory
    gc.collect()
    if gallery_state is not None:
        gallery_state = None
    return gallery_state, None, None, gr.update(visible=False)

def setup_model(loaded_model_setup, prompt, model, seed, num_iterations, enable_hps, hps_w, enable_imagereward, imgrw_w, enable_pickscore, pcks_w, enable_clip, clip_w, learning_rate, progress=gr.Progress(track_tqdm=True)):
    gr.Info(f"Loading {model} model ...")
    
    if prompt is None or prompt == "":
        raise gr.Error("You forgot to provide a prompt !")

    print(f"LOADED_MODEL SETUP: {loaded_model_setup}")
        
    """Clear CUDA memory before starting the training."""
    torch.cuda.empty_cache()  # Free up cached memory
    gc.collect()
    
    # Set up arguments
    args = parse_args()
    args.task = "single"
    args.prompt = prompt
    args.model = model
    args.seed = seed
    args.n_iters = num_iterations
    args.lr = learning_rate
    args.cache_dir = "./HF_model_cache"
    args.save_dir = "./outputs"
    args.save_all_images = True

    if enable_hps is True:
        args.disable_hps = False
        args.hps_weighting = hps_w
    
    if enable_imagereward is True:
        args.disable_imagereward = False
        args.imagereward_weighting = imgrw_w
    
    if enable_pickscore is True:
        args.disable_pickscore = False
        args.pickscore_weighting = pcks_w
    
    if enable_clip is True:
        args.disable_clip = False
        args.clip_weighting = clip_w

    if model == "flux":
        args.cpu_offloading = True
        args.enable_multi_apply= True
        args.multi_step_model = "flux"

    # Check if args are the same as the loaded_model_setup except for the prompt
    if loaded_model_setup and hasattr(loaded_model_setup[0], '__dict__'):
        previous_args = loaded_model_setup[0]
        
        # Exclude 'prompt' from comparison
        new_args_dict = {k: v for k, v in args.__dict__.items() if k != 'prompt'}
        prev_args_dict = {k: v for k, v in previous_args.__dict__.items() if k != 'prompt'}
        
        if new_args_dict == prev_args_dict:
            # If the arguments (excluding prompt) are the same, reuse the loaded setup
            print(f"Arguments (excluding prompt) are the same, reusing loaded setup for {model} model.")
            return f"{model} model already loaded with the same configuration.", loaded_model_setup

    # If other args differ, proceed with the setup
    try:
        args, trainer, device, dtype, shape, enable_grad, multi_apply_fn, settings = setup(args, loaded_model_setup)
        new_loaded_setup = [args, trainer, device, dtype, shape, enable_grad, multi_apply_fn, settings]
        return f"{model} model loaded succesfully !", new_loaded_setup
    
    except Exception as e:
        print(f"Unexpected Error: {e}")
        return f"Something went wrong with {model} loading: {e}", None

def generate_image(setup_args, num_iterations):
    torch.cuda.empty_cache()  # Free up cached memory
    gc.collect()

    gr.Info(f"Executing iterations task ...")

    args = setup_args[0]
    trainer = setup_args[1]
    device = setup_args[2]
    dtype = setup_args[3]
    shape = setup_args[4]
    enable_grad = setup_args[5]
    multi_apply_fn = setup_args[6]

    settings = setup_args[7]
    print(f"SETTINGS: {settings}")

    save_dir = f"{args.save_dir}/{args.task}/{settings}/{args.prompt[:150]}"
    clean_dir(save_dir)
    
    try:
        torch.cuda.empty_cache()  # Free up cached memory
        gc.collect()
        steps_completed = []
        result_container = {"best_image": None, "total_init_rewards": None, "total_best_rewards": None}
        error_status = {"error_occurred": False}  # Shared dictionary to track error status
        thread_status = {"running": False}  # Track whether a thread is already running
        
        def progress_callback(step):
            # Limit redundant prints by checking the step number
            if not steps_completed or step > steps_completed[-1]:
                steps_completed.append(step)
                print(f"Progress: Step {step} completed.")
        
        def run_main():
            thread_status["running"] = True  # Mark thread as running
            try:
                execute_task(
                    args, trainer, device, dtype, shape, enable_grad, multi_apply_fn, settings, progress_callback
                )
            except torch.cuda.OutOfMemoryError as e:
                print(f"CUDA Out of Memory Error: {e}")
                error_status["error_occurred"] = True
            except RuntimeError as e:
                if 'out of memory' in str(e):
                    print(f"Runtime Error: {e}")
                    error_status["error_occurred"] = True
                else:
                    raise
            finally:
                thread_status["running"] = False  # Mark thread as completed
        
        if not thread_status["running"]:  # Ensure no other thread is running
            main_thread = threading.Thread(target=run_main)
            main_thread.start()

            last_step_yielded = 0
            while main_thread.is_alive() and not error_status["error_occurred"]:
                # Check if new steps have been completed
                if steps_completed and steps_completed[-1] > last_step_yielded:
                    last_step_yielded = steps_completed[-1]
                    png_number = last_step_yielded - 1
                    # Get the image for this step
                    image_path = os.path.join(save_dir, f"{png_number}.png")
                    if os.path.exists(image_path):
                        yield (image_path, f"Iteration {last_step_yielded}/{num_iterations} - Image saved", None)
                    else:
                        yield (None, f"Iteration {last_step_yielded}/{num_iterations} - Image not found", None)
                else:
                    time.sleep(0.1)  # Sleep to prevent busy waiting

            if error_status["error_occurred"]:
                torch.cuda.empty_cache()  # Free up cached memory
                gc.collect()
                yield (None, "CUDA out of memory. Please reduce your batch size or image resolution.", None)
            else:
                main_thread.join()  # Ensure thread completion
                final_image_path = os.path.join(save_dir, "best_image.png")
                if os.path.exists(final_image_path):
                    iter_images = list_iter_images(save_dir)
                    torch.cuda.empty_cache()  # Free up cached memory
                    gc.collect()
                    time.sleep(0.5)
                    yield (final_image_path, f"Final image saved at {final_image_path}", iter_images)
                else:
                    torch.cuda.empty_cache()  # Free up cached memory
                    gc.collect()
                    yield (None, "Image generation completed, but no final image was found.", None)

        torch.cuda.empty_cache()  # Free up cached memory
        gc.collect()

    except torch.cuda.OutOfMemoryError as e:
        print(f"Global CUDA Out of Memory Error: {e}")
        yield (None, f"{e}", None)
    except RuntimeError as e:
        if 'out of memory' in str(e):
            print(f"Runtime Error: {e}")
            yield (None, f"{e}", None)
        else:
            yield (None, f"An error occurred: {str(e)}", None)
    except Exception as e:
        print(f"Unexpected Error: {e}")
        yield (None, f"An unexpected error occurred: {str(e)}", None)

def show_gallery_output(gallery_state):
    if gallery_state is not None:
        return gr.update(value=gallery_state, visible=True)
    else:
        return gr.update(value=None, visible=False)

# Create Gradio interface
title="# ReNO: Enhancing One-step Text-to-Image Models through Reward-based Noise Optimization"
description="Enter a prompt to generate an image using ReNO. Adjust the model and parameters as needed."

css="""
#model-status-id{
    height: 126px;
}
#model-status-id .progress-text{
    font-size: 10px!important;
}
#model-status-id .progress-level-inner{
    font-size: 8px!important;
}
"""

with gr.Blocks(css=css, analytics_enabled=False) as demo:
    loaded_model_setup = gr.State()
    gallery_state = gr.State()
    with gr.Column():
        gr.Markdown(title)
        gr.Markdown(description)
        gr.HTML("""
        <div style="display:flex;column-gap:4px;">
            <a href='https://github.com/ExplainableML/ReNO'>
                <img src='https://img.shields.io/badge/GitHub-Repo-blue'>
            </a> 
            <a href='https://arxiv.org/abs/2406.04312v1'>
                <img src='https://img.shields.io/badge/Paper-Arxiv-red'>
            </a>
        </div>
        """)

        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(label="Prompt")
                with gr.Row():
                    chosen_model = gr.Dropdown(["sd-turbo", "sdxl-turbo", "pixart", "hyper-sd", "flux"], label="Model", value="sd-turbo")
                    seed = gr.Number(label="seed", value=0)

                model_status = gr.Textbox(label="model status", visible=True, elem_id="model-status-id")
                
                with gr.Row():
                    n_iter = gr.Slider(minimum=10, maximum=100, step=10, value=10, label="Number of Iterations")
                    learning_rate = gr.Slider(minimum=0.1, maximum=10.0, step=0.1, value=5.0, label="Learning Rate")

                with gr.Accordion("Advanced Settings", open=True):
                    with gr.Column():
                        with gr.Row():
                            enable_hps = gr.Checkbox(label="HPS ON", value=False, scale=1)
                            hps_w = gr.Slider(label="HPS weight", step=0.1, minimum=0.0, maximum=10.0, value=5.0, interactive=False, scale=3)
                        with gr.Row():
                            enable_imagereward = gr.Checkbox(label="ImageReward ON", value=False, scale=1)
                            imgrw_w = gr.Slider(label="ImageReward weight", step=0.1, minimum=0, maximum=5.0, value=1.0, interactive=False, scale=3)
                        with gr.Row():
                            enable_pickscore = gr.Checkbox(label="PickScore ON", value=False, scale=1)
                            pcks_w = gr.Slider(label="PickScore weight", step=0.01, minimum=0, maximum=5.0, value=0.05, interactive=False, scale=3)
                        with gr.Row():
                            enable_clip = gr.Checkbox(label="CLIP ON", value=False, scale=1)
                            clip_w = gr.Slider(label="CLIP weight", step=0.01, minimum=0, maximum=0.1, value=0.01, interactive=False, scale=3)

                submit_btn = gr.Button("Submit")

                gr.Examples(
                    examples = [
                        "A red dog and a green cat",
                        "A pink elephant and a grey cow",
                        "A toaster riding a bike",
                        "Dwayne Johnson depicted as a philosopher king in an academic painting by Greg Rutkowski",
                        "A curious, orange fox and a fluffy, white rabbit, playing together in a lush, green meadow filled with yellow dandelions",
                        "An epic oil painting: a red portal infront of a cityscape, a solitary figure, and a colorful sky over snowy mountains"
                    ],
                    inputs = [prompt]     
                )
            
            with gr.Column():
                output_image = gr.Image(type="filepath", label="Best Generated Image")
                status = gr.Textbox(label="Status")
                iter_gallery = gr.Gallery(label="Iterations", columns=4, visible=False)

    def allow_weighting(weight_type):
        if weight_type is True:
            return gr.update(interactive=True)
        else:
            return gr.update(interactive=False)
    
    enable_hps.change(
        fn = allow_weighting,
        inputs = [enable_hps],
        outputs = [hps_w],
        queue = False
    )
    enable_imagereward.change(
        fn = allow_weighting,
        inputs = [enable_imagereward],
        outputs = [imgrw_w],
        queue = False
    )
    enable_pickscore.change(
        fn = allow_weighting,
        inputs = [enable_pickscore],
        outputs = [pcks_w],
        queue = False
    )
    enable_clip.change(
        fn = allow_weighting,
        inputs = [enable_clip],
        outputs = [clip_w],
        queue = False
    )
    
    
    submit_btn.click(
        fn = start_over,
        inputs =[gallery_state], 
        outputs = [gallery_state, output_image, status, iter_gallery]  
    ).then(
        fn = setup_model,
        inputs = [loaded_model_setup, prompt, chosen_model, seed, n_iter, enable_hps, hps_w, enable_imagereward, imgrw_w, enable_pickscore, pcks_w, enable_clip, clip_w, learning_rate],
        outputs = [model_status, loaded_model_setup]  # Load the new setup into the state
    ).then(
        fn = generate_image,
        inputs = [loaded_model_setup, n_iter],
        outputs = [output_image, status, gallery_state]
    ).then(
        fn = show_gallery_output,
        inputs = [gallery_state],
        outputs = iter_gallery
    )

# Launch the app
demo.queue().launch(show_error=True, show_api=False)