File size: 17,988 Bytes
1fcccb4
8d74f2f
eddc0c5
 
2f22a68
eddc0c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fcccb4
eddc0c5
 
 
 
 
 
917391d
eddc0c5
 
0bd5582
eddc0c5
 
f57f3d1
eddc0c5
1fcccb4
eddc0c5
 
 
f57f3d1
eddc0c5
 
 
 
 
 
 
 
 
 
 
 
 
925f03d
eddc0c5
925f03d
 
117ba61
eddc0c5
925f03d
eddc0c5
925f03d
 
117ba61
eddc0c5
925f03d
eddc0c5
925f03d
 
117ba61
eddc0c5
925f03d
eddc0c5
925f03d
 
eddc0c5
 
 
 
 
925f03d
 
 
eddc0c5
 
 
 
917391d
eddc0c5
 
 
f57f3d1
eddc0c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f57f3d1
eddc0c5
 
 
 
1fcccb4
eddc0c5
f57f3d1
 
69458a9
eddc0c5
3d05192
eddc0c5
 
 
 
 
 
f57f3d1
eddc0c5
 
f57f3d1
eddc0c5
f57f3d1
eddc0c5
 
f57f3d1
eddc0c5
 
 
 
 
 
 
f57f3d1
eddc0c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f57f3d1
 
2f22a68
eddc0c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f57f3d1
eddc0c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
925f03d
 
ca9b1c2
925f03d
 
 
eddc0c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
925f03d
eddc0c5
 
 
 
 
925f03d
 
eddc0c5
 
 
 
925f03d
eddc0c5
 
925f03d
eddc0c5
 
925f03d
 
eddc0c5
925f03d
eddc0c5
 
 
 
 
 
 
ca9b1c2
925f03d
eddc0c5
ca9b1c2
925f03d
eddc0c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f57f3d1
eddc0c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f57f3d1
eddc0c5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import torch
import gc
import gradio as gr
from main import setup, execute_task
from arguments import parse_args
import os
import shutil
import glob
import time
import threading
import argparse

def list_iter_images(save_dir):
    # Specify only PNG images
    image_extension = 'png'

    # Create a list to store the image file paths
    image_paths = []

    # Use glob to find all PNG image files
    all_images = glob.glob(os.path.join(save_dir, f'*.{image_extension}'))

    # Filter out 'best_image.png'
    image_paths = [img for img in all_images if os.path.basename(img) != 'best_image.png']

    return image_paths

def clean_dir(save_dir):
    # Check if the directory exists
    if os.path.exists(save_dir):
        # Check if the directory contains any files
        if len(os.listdir(save_dir)) > 0:
            # If it contains files, delete all files in the directory
            for filename in os.listdir(save_dir):
                file_path = os.path.join(save_dir, filename)
                try:
                    if os.path.isfile(file_path) or os.path.islink(file_path):
                        os.unlink(file_path)  # Remove file or symbolic link
                    elif os.path.isdir(file_path):
                        shutil.rmtree(file_path)  # Remove directory and its contents
                except Exception as e:
                    print(f"Failed to delete {file_path}. Reason: {e}")
            print(f"All files in {save_dir} have been deleted.")
        else:
            print(f"{save_dir} exists but is empty.")
    else:
        print(f"{save_dir} does not exist.")

def start_over(gallery_state):
    torch.cuda.empty_cache()  # Free up cached memory
    gc.collect()
    if gallery_state is not None:
        gallery_state = None
    return gallery_state, None, None, gr.update(visible=False)

def setup_model(loaded_model_setup, prompt, model, seed, num_iterations, enable_hps, hps_w, enable_imagereward, imgrw_w, enable_pickscore, pcks_w, enable_clip, clip_w, learning_rate, progress=gr.Progress(track_tqdm=True)):
    gr.Info(f"Loading {model} model ...")
    
    if prompt is None or prompt == "":
        raise gr.Error("You forgot to provide a prompt !")

    print(f"LOADED_MODEL SETUP: {loaded_model_setup}")
    
    """Clear CUDA memory before starting the training."""
    torch.cuda.empty_cache()  # Free up cached memory
    gc.collect()
    
    # Set up arguments
    args = parse_args()
    args.task = "single"
    args.prompt = prompt
    args.model = model
    args.seed = seed
    args.n_iters = num_iterations
    args.lr = learning_rate
    args.cache_dir = "./HF_model_cache"
    args.save_dir = "./outputs"
    args.save_all_images = True

    if enable_hps is True:
        args.enable_hps = True
        args.hps_weighting = hps_w
    else:
        args.enable_hps = False
    
    if enable_imagereward is True:
        args.enable_imagereward = True
        args.imagereward_weighting = imgrw_w
    else:
        args.enable_imagereward = False
    
    if enable_pickscore is True:
        args.enable_pickscore = True
        args.pickscore_weighting = pcks_w
    else:
        args.enable_pickscore = False
    
    if enable_clip is True:
        args.enable_clip = True
        args.clip_weighting = clip_w
    else:
        args.enable_clip = False

    if model == "flux":
        args.cpu_offloading = True
        args.enable_multi_apply = True
        args.multi_step_model = "flux"
    
    if model == "hyper-sd":
        args.cpu_offloading = True

    # Check if args are the same as the loaded_model_setup except for the prompt
    if loaded_model_setup and hasattr(loaded_model_setup[0], '__dict__'):
        previous_args = loaded_model_setup[0]
        
        # Exclude 'prompt' from comparison
        new_args_dict = {k: v for k, v in args.__dict__.items() if k != 'prompt'}
        prev_args_dict = {k: v for k, v in previous_args.__dict__.items() if k != 'prompt'}
        
        if new_args_dict == prev_args_dict:
            # If the arguments (excluding prompt) are the same, reuse the loaded setup
            print(f"Arguments (excluding prompt) are the same, reusing loaded setup for {model} model.")
            
            # Update the prompt in the loaded_model_setup
            loaded_model_setup[0].prompt = prompt
            
            yield f"{model} model already loaded with the same configuration.", loaded_model_setup      

    # Attempt to set up the model
    try:
        # If other args differ, proceed with the setup
        args, trainer, device, dtype, shape, enable_grad, settings, pipe = setup(args, loaded_model_setup)
        new_loaded_setup = [args, trainer, device, dtype, shape, enable_grad, settings, pipe]
        yield f"{model} model loaded successfully!", new_loaded_setup
    
    except Exception as e:
        print(f"Failed to load {model} model: {e}.")
        yield f"Failed to load {model} model: {e}. You can try again, as it usually finally loads on the second try :)", None
       

def generate_image(setup_args, num_iterations):
    torch.cuda.empty_cache()  # Free up cached memory
    gc.collect()

    gr.Info(f"Executing iterations task ...")

    args = setup_args[0]
    trainer = setup_args[1]
    device = setup_args[2]
    dtype = setup_args[3]
    shape = setup_args[4]
    enable_grad = setup_args[5]

    settings = setup_args[6]
    print(f"SETTINGS: {settings}")

    pipe = setup_args[7]

    save_dir = f"{args.save_dir}/{args.task}/{settings}/{args.prompt[:150]}"
    clean_dir(save_dir)
    
    try:
        torch.cuda.empty_cache()  # Free up cached memory
        gc.collect()
        steps_completed = []
        result_container = {"best_image": None, "total_init_rewards": None, "total_best_rewards": None}
        error_status = {"error_occurred": False}  # Shared dictionary to track error status
        thread_status = {"running": False}  # Track whether a thread is already running
        
        def progress_callback(step):
            # Limit redundant prints by checking the step number
            if not steps_completed or step > steps_completed[-1]:
                steps_completed.append(step)
                print(f"Progress: Step {step} completed.")
        
        def run_main():
            thread_status["running"] = True  # Mark thread as running
            try:
                execute_task(
                    args, trainer, device, dtype, shape, enable_grad, settings, pipe, progress_callback
                )
            except torch.cuda.OutOfMemoryError as e:
                print(f"CUDA Out of Memory Error: {e}")
                error_status["error_occurred"] = True
            except RuntimeError as e:
                if 'out of memory' in str(e):
                    print(f"Runtime Error: {e}")
                    error_status["error_occurred"] = True
                else:
                    raise
            finally:
                thread_status["running"] = False  # Mark thread as completed
        
        if not thread_status["running"]:  # Ensure no other thread is running
            main_thread = threading.Thread(target=run_main)
            main_thread.start()

            last_step_yielded = 0
            while main_thread.is_alive() and not error_status["error_occurred"]:
                # Check if new steps have been completed
                if steps_completed and steps_completed[-1] > last_step_yielded:
                    last_step_yielded = steps_completed[-1]
                    png_number = last_step_yielded - 1
                    # Get the image for this step
                    image_path = os.path.join(save_dir, f"{png_number}.png")
                    if os.path.exists(image_path):
                        yield (image_path, f"Iteration {last_step_yielded}/{num_iterations} - Image saved", None)
                    else:
                        yield (None, f"Iteration {last_step_yielded}/{num_iterations} - Image not found", None)
                else:
                    time.sleep(0.1)  # Sleep to prevent busy waiting

            if error_status["error_occurred"]:
                torch.cuda.empty_cache()  # Free up cached memory
                gc.collect()
                yield (None, "CUDA out of memory. Please reduce your batch size or image resolution.", None)
            else:
                main_thread.join()  # Ensure thread completion
                final_image_path = os.path.join(save_dir, "best_image.png")
                if os.path.exists(final_image_path):
                    iter_images = list_iter_images(save_dir)
                    torch.cuda.empty_cache()  # Free up cached memory
                    gc.collect()
                    time.sleep(0.5)
                    yield (final_image_path, f"Final image saved at {final_image_path}", iter_images)
                else:
                    torch.cuda.empty_cache()  # Free up cached memory
                    gc.collect()
                    yield (None, "Image generation completed, but no final image was found.", None)

        torch.cuda.empty_cache()  # Free up cached memory
        gc.collect()

    except torch.cuda.OutOfMemoryError as e:
        print(f"Global CUDA Out of Memory Error: {e}")
        yield (None, f"{e}", None)
    except RuntimeError as e:
        if 'out of memory' in str(e):
            print(f"Runtime Error: {e}")
            yield (None, f"{e}", None)
        else:
            yield (None, f"An error occurred: {str(e)}", None)
    except Exception as e:
        print(f"Unexpected Error: {e}")
        yield (None, f"An unexpected error occurred: {str(e)}", None)

def show_gallery_output(gallery_state):
    if gallery_state is not None:
        return gr.update(value=gallery_state, visible=True)
    else:
        return gr.update(value=None, visible=False)

def combined_function(gallery_state, loaded_model_setup, prompt, chosen_model, seed, n_iter, enable_hps, hps_w, enable_imagereward, imgrw_w, enable_pickscore, pcks_w, enable_clip, clip_w, learning_rate, progress=gr.Progress(track_tqdm=True)):
    # Step 1: Start Over
    gallery_state, output_image, status, iter_gallery_update = start_over(gallery_state)
    model_status = ""  # No model status yet
    yield gallery_state, output_image, status, iter_gallery_update, loaded_model_setup, model_status

    # Step 2: Setup the model
    model_status, new_loaded_model_setup = None, None
    for model_status, new_loaded_model_setup in setup_model(
        loaded_model_setup, prompt, chosen_model, seed, n_iter, enable_hps, hps_w, 
        enable_imagereward, imgrw_w, enable_pickscore, pcks_w, enable_clip, clip_w, learning_rate):
        yield gallery_state, output_image, status, iter_gallery_update, new_loaded_model_setup, model_status

    # Step 3: Generate the image
    output_image, status, gallery_state_update = None, None, None
    for output_image, status, gallery_state_update in generate_image(new_loaded_model_setup, n_iter):
        yield gallery_state_update, output_image, status, iter_gallery_update, new_loaded_model_setup, model_status

    # Step 4: Show the gallery
    iter_gallery_update = show_gallery_output(gallery_state_update)
    yield gallery_state_update, output_image, status, iter_gallery_update, new_loaded_model_setup, model_status


# Create Gradio interface
title="# ReNO: Enhancing One-step Text-to-Image Models through Reward-based Noise Optimization"
description = "Enter a prompt to generate an image using ReNO. The method enhances text-to-image generation by optimizing \
    the initial noise using reward models as detailed in the paper. The demo uses a lower learning rate (2.5) compared to the paper's default (5.0) \
    for smoother trajectories - if you are looking for more drastic changes, you can increase this value. You can also \
    adjust the reward weights to e.g. prioritize either prompt following (increase ImageReward) or aesthetic quality \
    (increase HPS/PickScore) based on your preferences.\n\nThe first time you load this demo, it will take a bit \
    to download and initialize the required model. Once loaded, each optimization run takes about 25-60 seconds."

css="""
#model-status-id{
    height: 126px;
}
#model-status-id .progress-text{
    font-size: 10px!important;
}
#model-status-id .progress-level-inner{
    font-size: 8px!important;
}
"""

with gr.Blocks(css=css, analytics_enabled=False) as demo:
    loaded_model_setup = gr.State()
    gallery_state = gr.State()
    with gr.Column():
        gr.Markdown(title)
        gr.Markdown(description)
        gr.HTML("""
        <div style="display:flex;column-gap:4px;">
            <a href='https://github.com/ExplainableML/ReNO'>
                <img src='https://img.shields.io/badge/GitHub-Repo-blue'>
            </a> 
            <a href='https://arxiv.org/abs/2406.04312v1'>
                <img src='https://img.shields.io/badge/Paper-Arxiv-red'>
            </a>
        </div>
        """)

        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(label="Prompt")
                with gr.Row():
                    chosen_model = gr.Dropdown(["sd-turbo", "sdxl-turbo", "pixart", "hyper-sd", "flux"], label="Model", value="sdxl-turbo")
                    seed = gr.Number(label="seed", value=0)

                model_status = gr.Textbox(label="model status", visible=True, elem_id="model-status-id")
                
                with gr.Row():
                    n_iter = gr.Slider(minimum=10, maximum=100, step=10, value=50, label="Number of Iterations")
                    learning_rate = gr.Slider(minimum=0.1, maximum=10.0, step=0.1, value=2.5, label="Learning Rate")

                with gr.Accordion("Advanced Settings", open=True):
                    with gr.Column():
                        with gr.Row():
                            enable_hps = gr.Checkbox(label="HPS ON", value=True, scale=1)
                            hps_w = gr.Slider(label="HPS weight", step=0.1, minimum=0.0, maximum=10.0, value=5.0, interactive=False, scale=3)
                        with gr.Row():
                            enable_imagereward = gr.Checkbox(label="ImageReward ON", value=True, scale=1)
                            imgrw_w = gr.Slider(label="ImageReward weight", step=0.1, minimum=0, maximum=5.0, value=1.0, interactive=False, scale=3)
                        with gr.Row():
                            enable_pickscore = gr.Checkbox(label="PickScore ON", value=True, scale=1)
                            pcks_w = gr.Slider(label="PickScore weight", step=0.01, minimum=0, maximum=0.5, value=0.05, interactive=False, scale=3)
                        with gr.Row():
                            enable_clip = gr.Checkbox(label="CLIP ON", value=True, scale=1)
                            clip_w = gr.Slider(label="CLIP weight", step=0.01, minimum=0, maximum=0.1, value=0.01, interactive=False, scale=3)

                submit_btn = gr.Button("Submit")

                gr.Examples(
                    examples = [
                        "A red dog and a green cat",
                        "A toaster riding a bike",
                        "A blue scooter is parked near a curb in front of a green vintage car",
                        "A curious, orange fox and a fluffy, white rabbit, playing together in a lush, green meadow filled with yellow dandelions",
                        "An orange chair to the right of a black airplane",
                        "A brain riding a rocketship towards the moon",
                    ],
                    inputs = [prompt]     
                )
            
            with gr.Column():
                output_image = gr.Image(type="filepath", label="Best Generated Image")
                status = gr.Textbox(label="Status")
                iter_gallery = gr.Gallery(label="Iterations", columns=4, visible=False)

    def allow_weighting(weight_type):
        if weight_type is True:
            return gr.update(interactive=True)
        else:
            return gr.update(interactive=False)
    
    enable_hps.change(
        fn = allow_weighting,
        inputs = [enable_hps],
        outputs = [hps_w],
        queue = False
    )
    enable_imagereward.change(
        fn = allow_weighting,
        inputs = [enable_imagereward],
        outputs = [imgrw_w],
        queue = False
    )
    enable_pickscore.change(
        fn = allow_weighting,
        inputs = [enable_pickscore],
        outputs = [pcks_w],
        queue = False
    )
    enable_clip.change(
        fn = allow_weighting,
        inputs = [enable_clip],
        outputs = [clip_w],
        queue = False
    )

    submit_btn.click(
        fn = combined_function,
        inputs = [
            gallery_state, loaded_model_setup, prompt, chosen_model, seed, n_iter, 
            enable_hps, hps_w, enable_imagereward, imgrw_w, enable_pickscore, 
            pcks_w, enable_clip, clip_w, learning_rate
        ],
        outputs = [
            gallery_state, output_image, status, iter_gallery, loaded_model_setup, model_status  # Ensure `model_status` is included in the outputs
        ]
    )
    
    """
    submit_btn.click(
        fn = start_over,
        inputs =[gallery_state], 
        outputs = [gallery_state, output_image, status, iter_gallery]  
    ).then(
        fn = setup_model,
        inputs = [loaded_model_setup, prompt, chosen_model, seed, n_iter, enable_hps, hps_w, enable_imagereward, imgrw_w, enable_pickscore, pcks_w, enable_clip, clip_w, learning_rate],
        outputs = [model_status, loaded_model_setup]  # Load the new setup into the state
    ).then(
        fn = generate_image,
        inputs = [loaded_model_setup, n_iter],
        outputs = [output_image, status, gallery_state]
    ).then(
        fn = show_gallery_output,
        inputs = [gallery_state],
        outputs = iter_gallery
    )
    """

# Launch the app
demo.queue().launch(show_error=True, show_api=False)