Spaces:
Sleeping
Sleeping
File size: 17,988 Bytes
1fcccb4 8d74f2f eddc0c5 2f22a68 eddc0c5 1fcccb4 eddc0c5 917391d eddc0c5 0bd5582 eddc0c5 f57f3d1 eddc0c5 1fcccb4 eddc0c5 f57f3d1 eddc0c5 925f03d eddc0c5 925f03d 117ba61 eddc0c5 925f03d eddc0c5 925f03d 117ba61 eddc0c5 925f03d eddc0c5 925f03d 117ba61 eddc0c5 925f03d eddc0c5 925f03d eddc0c5 925f03d eddc0c5 917391d eddc0c5 f57f3d1 eddc0c5 f57f3d1 eddc0c5 1fcccb4 eddc0c5 f57f3d1 69458a9 eddc0c5 3d05192 eddc0c5 f57f3d1 eddc0c5 f57f3d1 eddc0c5 f57f3d1 eddc0c5 f57f3d1 eddc0c5 f57f3d1 eddc0c5 f57f3d1 2f22a68 eddc0c5 f57f3d1 eddc0c5 925f03d ca9b1c2 925f03d eddc0c5 925f03d eddc0c5 925f03d eddc0c5 925f03d eddc0c5 925f03d eddc0c5 925f03d eddc0c5 925f03d eddc0c5 ca9b1c2 925f03d eddc0c5 ca9b1c2 925f03d eddc0c5 f57f3d1 eddc0c5 f57f3d1 eddc0c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
import torch
import gc
import gradio as gr
from main import setup, execute_task
from arguments import parse_args
import os
import shutil
import glob
import time
import threading
import argparse
def list_iter_images(save_dir):
# Specify only PNG images
image_extension = 'png'
# Create a list to store the image file paths
image_paths = []
# Use glob to find all PNG image files
all_images = glob.glob(os.path.join(save_dir, f'*.{image_extension}'))
# Filter out 'best_image.png'
image_paths = [img for img in all_images if os.path.basename(img) != 'best_image.png']
return image_paths
def clean_dir(save_dir):
# Check if the directory exists
if os.path.exists(save_dir):
# Check if the directory contains any files
if len(os.listdir(save_dir)) > 0:
# If it contains files, delete all files in the directory
for filename in os.listdir(save_dir):
file_path = os.path.join(save_dir, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path) # Remove file or symbolic link
elif os.path.isdir(file_path):
shutil.rmtree(file_path) # Remove directory and its contents
except Exception as e:
print(f"Failed to delete {file_path}. Reason: {e}")
print(f"All files in {save_dir} have been deleted.")
else:
print(f"{save_dir} exists but is empty.")
else:
print(f"{save_dir} does not exist.")
def start_over(gallery_state):
torch.cuda.empty_cache() # Free up cached memory
gc.collect()
if gallery_state is not None:
gallery_state = None
return gallery_state, None, None, gr.update(visible=False)
def setup_model(loaded_model_setup, prompt, model, seed, num_iterations, enable_hps, hps_w, enable_imagereward, imgrw_w, enable_pickscore, pcks_w, enable_clip, clip_w, learning_rate, progress=gr.Progress(track_tqdm=True)):
gr.Info(f"Loading {model} model ...")
if prompt is None or prompt == "":
raise gr.Error("You forgot to provide a prompt !")
print(f"LOADED_MODEL SETUP: {loaded_model_setup}")
"""Clear CUDA memory before starting the training."""
torch.cuda.empty_cache() # Free up cached memory
gc.collect()
# Set up arguments
args = parse_args()
args.task = "single"
args.prompt = prompt
args.model = model
args.seed = seed
args.n_iters = num_iterations
args.lr = learning_rate
args.cache_dir = "./HF_model_cache"
args.save_dir = "./outputs"
args.save_all_images = True
if enable_hps is True:
args.enable_hps = True
args.hps_weighting = hps_w
else:
args.enable_hps = False
if enable_imagereward is True:
args.enable_imagereward = True
args.imagereward_weighting = imgrw_w
else:
args.enable_imagereward = False
if enable_pickscore is True:
args.enable_pickscore = True
args.pickscore_weighting = pcks_w
else:
args.enable_pickscore = False
if enable_clip is True:
args.enable_clip = True
args.clip_weighting = clip_w
else:
args.enable_clip = False
if model == "flux":
args.cpu_offloading = True
args.enable_multi_apply = True
args.multi_step_model = "flux"
if model == "hyper-sd":
args.cpu_offloading = True
# Check if args are the same as the loaded_model_setup except for the prompt
if loaded_model_setup and hasattr(loaded_model_setup[0], '__dict__'):
previous_args = loaded_model_setup[0]
# Exclude 'prompt' from comparison
new_args_dict = {k: v for k, v in args.__dict__.items() if k != 'prompt'}
prev_args_dict = {k: v for k, v in previous_args.__dict__.items() if k != 'prompt'}
if new_args_dict == prev_args_dict:
# If the arguments (excluding prompt) are the same, reuse the loaded setup
print(f"Arguments (excluding prompt) are the same, reusing loaded setup for {model} model.")
# Update the prompt in the loaded_model_setup
loaded_model_setup[0].prompt = prompt
yield f"{model} model already loaded with the same configuration.", loaded_model_setup
# Attempt to set up the model
try:
# If other args differ, proceed with the setup
args, trainer, device, dtype, shape, enable_grad, settings, pipe = setup(args, loaded_model_setup)
new_loaded_setup = [args, trainer, device, dtype, shape, enable_grad, settings, pipe]
yield f"{model} model loaded successfully!", new_loaded_setup
except Exception as e:
print(f"Failed to load {model} model: {e}.")
yield f"Failed to load {model} model: {e}. You can try again, as it usually finally loads on the second try :)", None
def generate_image(setup_args, num_iterations):
torch.cuda.empty_cache() # Free up cached memory
gc.collect()
gr.Info(f"Executing iterations task ...")
args = setup_args[0]
trainer = setup_args[1]
device = setup_args[2]
dtype = setup_args[3]
shape = setup_args[4]
enable_grad = setup_args[5]
settings = setup_args[6]
print(f"SETTINGS: {settings}")
pipe = setup_args[7]
save_dir = f"{args.save_dir}/{args.task}/{settings}/{args.prompt[:150]}"
clean_dir(save_dir)
try:
torch.cuda.empty_cache() # Free up cached memory
gc.collect()
steps_completed = []
result_container = {"best_image": None, "total_init_rewards": None, "total_best_rewards": None}
error_status = {"error_occurred": False} # Shared dictionary to track error status
thread_status = {"running": False} # Track whether a thread is already running
def progress_callback(step):
# Limit redundant prints by checking the step number
if not steps_completed or step > steps_completed[-1]:
steps_completed.append(step)
print(f"Progress: Step {step} completed.")
def run_main():
thread_status["running"] = True # Mark thread as running
try:
execute_task(
args, trainer, device, dtype, shape, enable_grad, settings, pipe, progress_callback
)
except torch.cuda.OutOfMemoryError as e:
print(f"CUDA Out of Memory Error: {e}")
error_status["error_occurred"] = True
except RuntimeError as e:
if 'out of memory' in str(e):
print(f"Runtime Error: {e}")
error_status["error_occurred"] = True
else:
raise
finally:
thread_status["running"] = False # Mark thread as completed
if not thread_status["running"]: # Ensure no other thread is running
main_thread = threading.Thread(target=run_main)
main_thread.start()
last_step_yielded = 0
while main_thread.is_alive() and not error_status["error_occurred"]:
# Check if new steps have been completed
if steps_completed and steps_completed[-1] > last_step_yielded:
last_step_yielded = steps_completed[-1]
png_number = last_step_yielded - 1
# Get the image for this step
image_path = os.path.join(save_dir, f"{png_number}.png")
if os.path.exists(image_path):
yield (image_path, f"Iteration {last_step_yielded}/{num_iterations} - Image saved", None)
else:
yield (None, f"Iteration {last_step_yielded}/{num_iterations} - Image not found", None)
else:
time.sleep(0.1) # Sleep to prevent busy waiting
if error_status["error_occurred"]:
torch.cuda.empty_cache() # Free up cached memory
gc.collect()
yield (None, "CUDA out of memory. Please reduce your batch size or image resolution.", None)
else:
main_thread.join() # Ensure thread completion
final_image_path = os.path.join(save_dir, "best_image.png")
if os.path.exists(final_image_path):
iter_images = list_iter_images(save_dir)
torch.cuda.empty_cache() # Free up cached memory
gc.collect()
time.sleep(0.5)
yield (final_image_path, f"Final image saved at {final_image_path}", iter_images)
else:
torch.cuda.empty_cache() # Free up cached memory
gc.collect()
yield (None, "Image generation completed, but no final image was found.", None)
torch.cuda.empty_cache() # Free up cached memory
gc.collect()
except torch.cuda.OutOfMemoryError as e:
print(f"Global CUDA Out of Memory Error: {e}")
yield (None, f"{e}", None)
except RuntimeError as e:
if 'out of memory' in str(e):
print(f"Runtime Error: {e}")
yield (None, f"{e}", None)
else:
yield (None, f"An error occurred: {str(e)}", None)
except Exception as e:
print(f"Unexpected Error: {e}")
yield (None, f"An unexpected error occurred: {str(e)}", None)
def show_gallery_output(gallery_state):
if gallery_state is not None:
return gr.update(value=gallery_state, visible=True)
else:
return gr.update(value=None, visible=False)
def combined_function(gallery_state, loaded_model_setup, prompt, chosen_model, seed, n_iter, enable_hps, hps_w, enable_imagereward, imgrw_w, enable_pickscore, pcks_w, enable_clip, clip_w, learning_rate, progress=gr.Progress(track_tqdm=True)):
# Step 1: Start Over
gallery_state, output_image, status, iter_gallery_update = start_over(gallery_state)
model_status = "" # No model status yet
yield gallery_state, output_image, status, iter_gallery_update, loaded_model_setup, model_status
# Step 2: Setup the model
model_status, new_loaded_model_setup = None, None
for model_status, new_loaded_model_setup in setup_model(
loaded_model_setup, prompt, chosen_model, seed, n_iter, enable_hps, hps_w,
enable_imagereward, imgrw_w, enable_pickscore, pcks_w, enable_clip, clip_w, learning_rate):
yield gallery_state, output_image, status, iter_gallery_update, new_loaded_model_setup, model_status
# Step 3: Generate the image
output_image, status, gallery_state_update = None, None, None
for output_image, status, gallery_state_update in generate_image(new_loaded_model_setup, n_iter):
yield gallery_state_update, output_image, status, iter_gallery_update, new_loaded_model_setup, model_status
# Step 4: Show the gallery
iter_gallery_update = show_gallery_output(gallery_state_update)
yield gallery_state_update, output_image, status, iter_gallery_update, new_loaded_model_setup, model_status
# Create Gradio interface
title="# ReNO: Enhancing One-step Text-to-Image Models through Reward-based Noise Optimization"
description = "Enter a prompt to generate an image using ReNO. The method enhances text-to-image generation by optimizing \
the initial noise using reward models as detailed in the paper. The demo uses a lower learning rate (2.5) compared to the paper's default (5.0) \
for smoother trajectories - if you are looking for more drastic changes, you can increase this value. You can also \
adjust the reward weights to e.g. prioritize either prompt following (increase ImageReward) or aesthetic quality \
(increase HPS/PickScore) based on your preferences.\n\nThe first time you load this demo, it will take a bit \
to download and initialize the required model. Once loaded, each optimization run takes about 25-60 seconds."
css="""
#model-status-id{
height: 126px;
}
#model-status-id .progress-text{
font-size: 10px!important;
}
#model-status-id .progress-level-inner{
font-size: 8px!important;
}
"""
with gr.Blocks(css=css, analytics_enabled=False) as demo:
loaded_model_setup = gr.State()
gallery_state = gr.State()
with gr.Column():
gr.Markdown(title)
gr.Markdown(description)
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href='https://github.com/ExplainableML/ReNO'>
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href='https://arxiv.org/abs/2406.04312v1'>
<img src='https://img.shields.io/badge/Paper-Arxiv-red'>
</a>
</div>
""")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt")
with gr.Row():
chosen_model = gr.Dropdown(["sd-turbo", "sdxl-turbo", "pixart", "hyper-sd", "flux"], label="Model", value="sdxl-turbo")
seed = gr.Number(label="seed", value=0)
model_status = gr.Textbox(label="model status", visible=True, elem_id="model-status-id")
with gr.Row():
n_iter = gr.Slider(minimum=10, maximum=100, step=10, value=50, label="Number of Iterations")
learning_rate = gr.Slider(minimum=0.1, maximum=10.0, step=0.1, value=2.5, label="Learning Rate")
with gr.Accordion("Advanced Settings", open=True):
with gr.Column():
with gr.Row():
enable_hps = gr.Checkbox(label="HPS ON", value=True, scale=1)
hps_w = gr.Slider(label="HPS weight", step=0.1, minimum=0.0, maximum=10.0, value=5.0, interactive=False, scale=3)
with gr.Row():
enable_imagereward = gr.Checkbox(label="ImageReward ON", value=True, scale=1)
imgrw_w = gr.Slider(label="ImageReward weight", step=0.1, minimum=0, maximum=5.0, value=1.0, interactive=False, scale=3)
with gr.Row():
enable_pickscore = gr.Checkbox(label="PickScore ON", value=True, scale=1)
pcks_w = gr.Slider(label="PickScore weight", step=0.01, minimum=0, maximum=0.5, value=0.05, interactive=False, scale=3)
with gr.Row():
enable_clip = gr.Checkbox(label="CLIP ON", value=True, scale=1)
clip_w = gr.Slider(label="CLIP weight", step=0.01, minimum=0, maximum=0.1, value=0.01, interactive=False, scale=3)
submit_btn = gr.Button("Submit")
gr.Examples(
examples = [
"A red dog and a green cat",
"A toaster riding a bike",
"A blue scooter is parked near a curb in front of a green vintage car",
"A curious, orange fox and a fluffy, white rabbit, playing together in a lush, green meadow filled with yellow dandelions",
"An orange chair to the right of a black airplane",
"A brain riding a rocketship towards the moon",
],
inputs = [prompt]
)
with gr.Column():
output_image = gr.Image(type="filepath", label="Best Generated Image")
status = gr.Textbox(label="Status")
iter_gallery = gr.Gallery(label="Iterations", columns=4, visible=False)
def allow_weighting(weight_type):
if weight_type is True:
return gr.update(interactive=True)
else:
return gr.update(interactive=False)
enable_hps.change(
fn = allow_weighting,
inputs = [enable_hps],
outputs = [hps_w],
queue = False
)
enable_imagereward.change(
fn = allow_weighting,
inputs = [enable_imagereward],
outputs = [imgrw_w],
queue = False
)
enable_pickscore.change(
fn = allow_weighting,
inputs = [enable_pickscore],
outputs = [pcks_w],
queue = False
)
enable_clip.change(
fn = allow_weighting,
inputs = [enable_clip],
outputs = [clip_w],
queue = False
)
submit_btn.click(
fn = combined_function,
inputs = [
gallery_state, loaded_model_setup, prompt, chosen_model, seed, n_iter,
enable_hps, hps_w, enable_imagereward, imgrw_w, enable_pickscore,
pcks_w, enable_clip, clip_w, learning_rate
],
outputs = [
gallery_state, output_image, status, iter_gallery, loaded_model_setup, model_status # Ensure `model_status` is included in the outputs
]
)
"""
submit_btn.click(
fn = start_over,
inputs =[gallery_state],
outputs = [gallery_state, output_image, status, iter_gallery]
).then(
fn = setup_model,
inputs = [loaded_model_setup, prompt, chosen_model, seed, n_iter, enable_hps, hps_w, enable_imagereward, imgrw_w, enable_pickscore, pcks_w, enable_clip, clip_w, learning_rate],
outputs = [model_status, loaded_model_setup] # Load the new setup into the state
).then(
fn = generate_image,
inputs = [loaded_model_setup, n_iter],
outputs = [output_image, status, gallery_state]
).then(
fn = show_gallery_output,
inputs = [gallery_state],
outputs = iter_gallery
)
"""
# Launch the app
demo.queue().launch(show_error=True, show_api=False) |