Spaces:
Sleeping
Sleeping
from typing import List, Optional, Union | |
import torch | |
from diffusers import PixArtAlphaPipeline | |
from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha import \ | |
retrieve_timesteps | |
def freeze_params(params): | |
for param in params: | |
param.requires_grad = False | |
class RewardPixartPipeline(PixArtAlphaPipeline): | |
def __init__( | |
self, tokenizer, text_encoder, transformer, scheduler, vae, memsave=False | |
): | |
super().__init__( | |
tokenizer, | |
text_encoder, | |
vae, | |
transformer, | |
scheduler, | |
) | |
# optionally enable memsave_torch | |
if memsave: | |
import memsave_torch.nn | |
self.vae = memsave_torch.nn.convert_to_memory_saving(self.vae) | |
self.text_encoder = memsave_torch.nn.convert_to_memory_saving( | |
self.text_encoder | |
) | |
self.text_encoder.gradient_checkpointing_enable() | |
self.vae.enable_gradient_checkpointing() | |
self.text_encoder.eval() | |
self.vae.eval() | |
freeze_params(self.vae.parameters()) | |
freeze_params(self.text_encoder.parameters()) | |
def apply( | |
self, | |
latents: torch.Tensor = None, | |
prompt: Union[str, List[str]] = None, | |
negative_prompt: str = "", | |
num_inference_steps: int = 20, | |
timesteps: List[int] = [400], | |
sigmas: List[float] = None, | |
guidance_scale: float = 1.0, | |
num_images_per_prompt: Optional[int] = 1, | |
height: Optional[int] = 512, | |
width: Optional[int] = 512, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
prompt_attention_mask: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_attention_mask: Optional[torch.FloatTensor] = None, | |
callback_steps: int = 1, | |
clean_caption: bool = False, | |
use_resolution_binning: bool = True, | |
max_sequence_length: int = 120, | |
**kwargs, | |
): | |
# 1. Check inputs. Raise error if not correct | |
height = height or self.transformer.config.sample_size * self.vae_scale_factor | |
width = width or self.transformer.config.sample_size * self.vae_scale_factor | |
if use_resolution_binning: | |
if self.transformer.config.sample_size == 128: | |
aspect_ratio_bin = ASPECT_RATIO_1024_BIN | |
elif self.transformer.config.sample_size == 64: | |
aspect_ratio_bin = ASPECT_RATIO_512_BIN | |
elif self.transformer.config.sample_size == 32: | |
aspect_ratio_bin = ASPECT_RATIO_256_BIN | |
else: | |
raise ValueError("Invalid sample size") | |
orig_height, orig_width = height, width | |
height, width = self.image_processor.classify_height_width_bin( | |
height, width, ratios=aspect_ratio_bin | |
) | |
self.check_inputs( | |
prompt, | |
height, | |
width, | |
negative_prompt, | |
callback_steps, | |
prompt_embeds, | |
negative_prompt_embeds, | |
prompt_attention_mask, | |
negative_prompt_attention_mask, | |
) | |
# 2. Default height and width to transformer | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompt | |
( | |
prompt_embeds, | |
prompt_attention_mask, | |
negative_prompt_embeds, | |
negative_prompt_attention_mask, | |
) = self.encode_prompt( | |
prompt, | |
do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
device=device, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
prompt_attention_mask=prompt_attention_mask, | |
negative_prompt_attention_mask=negative_prompt_attention_mask, | |
clean_caption=clean_caption, | |
max_sequence_length=max_sequence_length, | |
) | |
if do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
prompt_attention_mask = torch.cat( | |
[negative_prompt_attention_mask, prompt_attention_mask], dim=0 | |
) | |
# 4. Prepare timesteps | |
timesteps, num_inference_steps = retrieve_timesteps( | |
self.scheduler, num_inference_steps, device, timesteps, sigmas | |
) | |
# 5. Prepare latents. | |
latent_channels = self.transformer.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
latent_channels, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 6.1 Prepare micro-conditions. | |
added_cond_kwargs = {"resolution": None, "aspect_ratio": None} | |
if self.transformer.config.sample_size == 128: | |
resolution = torch.tensor([height, width]).repeat( | |
batch_size * num_images_per_prompt, 1 | |
) | |
aspect_ratio = torch.tensor([float(height / width)]).repeat( | |
batch_size * num_images_per_prompt, 1 | |
) | |
resolution = resolution.to(dtype=prompt_embeds.dtype, device=device) | |
aspect_ratio = aspect_ratio.to(dtype=prompt_embeds.dtype, device=device) | |
if do_classifier_free_guidance: | |
resolution = torch.cat([resolution, resolution], dim=0) | |
aspect_ratio = torch.cat([aspect_ratio, aspect_ratio], dim=0) | |
added_cond_kwargs = {"resolution": resolution, "aspect_ratio": aspect_ratio} | |
# 7. Denoising loop | |
num_warmup_steps = max( | |
len(timesteps) - num_inference_steps * self.scheduler.order, 0 | |
) | |
for i, t in enumerate(timesteps): | |
latent_model_input = ( | |
torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
) | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
current_timestep = t | |
if not torch.is_tensor(current_timestep): | |
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
# This would be a good case for the `match` statement (Python 3.10+) | |
is_mps = latent_model_input.device.type == "mps" | |
if isinstance(current_timestep, float): | |
dtype = torch.float32 if is_mps else torch.float64 | |
else: | |
dtype = torch.int32 if is_mps else torch.int64 | |
current_timestep = torch.tensor( | |
[current_timestep], dtype=dtype, device=latent_model_input.device | |
) | |
elif len(current_timestep.shape) == 0: | |
current_timestep = current_timestep[None].to(latent_model_input.device) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
current_timestep = current_timestep.expand(latent_model_input.shape[0]) | |
# predict noise model_output | |
noise_pred = self.transformer( | |
latent_model_input, | |
encoder_hidden_states=prompt_embeds, | |
encoder_attention_mask=prompt_attention_mask, | |
timestep=current_timestep, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * ( | |
noise_pred_text - noise_pred_uncond | |
) | |
# learned sigma | |
if self.transformer.config.out_channels // 2 == latent_channels: | |
noise_pred = noise_pred.chunk(2, dim=1)[0] | |
else: | |
noise_pred = noise_pred | |
# compute previous image: x_t -> x_t-1 | |
if num_inference_steps == 1: | |
# For DMD one step sampling: https://arxiv.org/abs/2311.18828 | |
latents = self.scheduler.step( | |
noise_pred, t, latents, **extra_step_kwargs | |
).pred_original_sample | |
image = self.vae.decode( | |
latents / self.vae.config.scaling_factor, return_dict=False | |
)[0] | |
if use_resolution_binning: | |
image = self.image_processor.resize_and_crop_tensor( | |
image, orig_width, orig_height | |
) | |
image = (image / 2 + 0.5).clamp(0, 1) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
return image | |
ASPECT_RATIO_2048_BIN = { | |
"0.25": [1024.0, 4096.0], | |
"0.26": [1024.0, 3968.0], | |
"0.27": [1024.0, 3840.0], | |
"0.28": [1024.0, 3712.0], | |
"0.32": [1152.0, 3584.0], | |
"0.33": [1152.0, 3456.0], | |
"0.35": [1152.0, 3328.0], | |
"0.4": [1280.0, 3200.0], | |
"0.42": [1280.0, 3072.0], | |
"0.48": [1408.0, 2944.0], | |
"0.5": [1408.0, 2816.0], | |
"0.52": [1408.0, 2688.0], | |
"0.57": [1536.0, 2688.0], | |
"0.6": [1536.0, 2560.0], | |
"0.68": [1664.0, 2432.0], | |
"0.72": [1664.0, 2304.0], | |
"0.78": [1792.0, 2304.0], | |
"0.82": [1792.0, 2176.0], | |
"0.88": [1920.0, 2176.0], | |
"0.94": [1920.0, 2048.0], | |
"1.0": [2048.0, 2048.0], | |
"1.07": [2048.0, 1920.0], | |
"1.13": [2176.0, 1920.0], | |
"1.21": [2176.0, 1792.0], | |
"1.29": [2304.0, 1792.0], | |
"1.38": [2304.0, 1664.0], | |
"1.46": [2432.0, 1664.0], | |
"1.67": [2560.0, 1536.0], | |
"1.75": [2688.0, 1536.0], | |
"2.0": [2816.0, 1408.0], | |
"2.09": [2944.0, 1408.0], | |
"2.4": [3072.0, 1280.0], | |
"2.5": [3200.0, 1280.0], | |
"2.89": [3328.0, 1152.0], | |
"3.0": [3456.0, 1152.0], | |
"3.11": [3584.0, 1152.0], | |
"3.62": [3712.0, 1024.0], | |
"3.75": [3840.0, 1024.0], | |
"3.88": [3968.0, 1024.0], | |
"4.0": [4096.0, 1024.0], | |
} | |
ASPECT_RATIO_256_BIN = { | |
"0.25": [128.0, 512.0], | |
"0.28": [128.0, 464.0], | |
"0.32": [144.0, 448.0], | |
"0.33": [144.0, 432.0], | |
"0.35": [144.0, 416.0], | |
"0.4": [160.0, 400.0], | |
"0.42": [160.0, 384.0], | |
"0.48": [176.0, 368.0], | |
"0.5": [176.0, 352.0], | |
"0.52": [176.0, 336.0], | |
"0.57": [192.0, 336.0], | |
"0.6": [192.0, 320.0], | |
"0.68": [208.0, 304.0], | |
"0.72": [208.0, 288.0], | |
"0.78": [224.0, 288.0], | |
"0.82": [224.0, 272.0], | |
"0.88": [240.0, 272.0], | |
"0.94": [240.0, 256.0], | |
"1.0": [256.0, 256.0], | |
"1.07": [256.0, 240.0], | |
"1.13": [272.0, 240.0], | |
"1.21": [272.0, 224.0], | |
"1.29": [288.0, 224.0], | |
"1.38": [288.0, 208.0], | |
"1.46": [304.0, 208.0], | |
"1.67": [320.0, 192.0], | |
"1.75": [336.0, 192.0], | |
"2.0": [352.0, 176.0], | |
"2.09": [368.0, 176.0], | |
"2.4": [384.0, 160.0], | |
"2.5": [400.0, 160.0], | |
"3.0": [432.0, 144.0], | |
"4.0": [512.0, 128.0], | |
} | |
ASPECT_RATIO_1024_BIN = { | |
"0.25": [512.0, 2048.0], | |
"0.28": [512.0, 1856.0], | |
"0.32": [576.0, 1792.0], | |
"0.33": [576.0, 1728.0], | |
"0.35": [576.0, 1664.0], | |
"0.4": [640.0, 1600.0], | |
"0.42": [640.0, 1536.0], | |
"0.48": [704.0, 1472.0], | |
"0.5": [704.0, 1408.0], | |
"0.52": [704.0, 1344.0], | |
"0.57": [768.0, 1344.0], | |
"0.6": [768.0, 1280.0], | |
"0.68": [832.0, 1216.0], | |
"0.72": [832.0, 1152.0], | |
"0.78": [896.0, 1152.0], | |
"0.82": [896.0, 1088.0], | |
"0.88": [960.0, 1088.0], | |
"0.94": [960.0, 1024.0], | |
"1.0": [1024.0, 1024.0], | |
"1.07": [1024.0, 960.0], | |
"1.13": [1088.0, 960.0], | |
"1.21": [1088.0, 896.0], | |
"1.29": [1152.0, 896.0], | |
"1.38": [1152.0, 832.0], | |
"1.46": [1216.0, 832.0], | |
"1.67": [1280.0, 768.0], | |
"1.75": [1344.0, 768.0], | |
"2.0": [1408.0, 704.0], | |
"2.09": [1472.0, 704.0], | |
"2.4": [1536.0, 640.0], | |
"2.5": [1600.0, 640.0], | |
"3.0": [1728.0, 576.0], | |
"4.0": [2048.0, 512.0], | |
} | |
ASPECT_RATIO_512_BIN = { | |
"0.25": [256.0, 1024.0], | |
"0.28": [256.0, 928.0], | |
"0.32": [288.0, 896.0], | |
"0.33": [288.0, 864.0], | |
"0.35": [288.0, 832.0], | |
"0.4": [320.0, 800.0], | |
"0.42": [320.0, 768.0], | |
"0.48": [352.0, 736.0], | |
"0.5": [352.0, 704.0], | |
"0.52": [352.0, 672.0], | |
"0.57": [384.0, 672.0], | |
"0.6": [384.0, 640.0], | |
"0.68": [416.0, 608.0], | |
"0.72": [416.0, 576.0], | |
"0.78": [448.0, 576.0], | |
"0.82": [448.0, 544.0], | |
"0.88": [480.0, 544.0], | |
"0.94": [480.0, 512.0], | |
"1.0": [512.0, 512.0], | |
"1.07": [512.0, 480.0], | |
"1.13": [544.0, 480.0], | |
"1.21": [544.0, 448.0], | |
"1.29": [576.0, 448.0], | |
"1.38": [576.0, 416.0], | |
"1.46": [608.0, 416.0], | |
"1.67": [640.0, 384.0], | |
"1.75": [672.0, 384.0], | |
"2.0": [704.0, 352.0], | |
"2.09": [736.0, 352.0], | |
"2.4": [768.0, 320.0], | |
"2.5": [800.0, 320.0], | |
"3.0": [864.0, 288.0], | |
"4.0": [1024.0, 256.0], | |
} | |