fffiloni commited on
Commit
00f4438
·
1 Parent(s): 238d2f7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -10
app.py CHANGED
@@ -34,7 +34,7 @@ pipe.to("cuda")
34
 
35
  #pipe.enable_model_cpu_offload()
36
 
37
- def infer(use_custom_model, model_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, steps, seed, progress=gr.Progress(track_tqdm=True)):
38
  prompt = prompt
39
  negative_prompt = negative_prompt
40
  generator = torch.Generator(device="cuda").manual_seed(seed)
@@ -61,9 +61,9 @@ def infer(use_custom_model, model_name, custom_lora_weight, image_in, prompt, ne
61
  prompt,
62
  negative_prompt=negative_prompt,
63
  image=image,
64
- controlnet_conditioning_scale=controlnet_conditioning_scale,
65
- guidance_scale = guidance_scale,
66
- num_inference_steps=steps,
67
  generator=generator,
68
  cross_attention_kwargs={"scale": lora_scale}
69
  ).images
@@ -72,9 +72,9 @@ def infer(use_custom_model, model_name, custom_lora_weight, image_in, prompt, ne
72
  prompt,
73
  negative_prompt=negative_prompt,
74
  image=image,
75
- controlnet_conditioning_scale=controlnet_conditioning_scale,
76
- guidance_scale = guidance_scale,
77
- num_inference_steps=steps,
78
  generator=generator,
79
  ).images
80
 
@@ -103,10 +103,10 @@ with gr.Blocks(css=css) as demo:
103
  prompt = gr.Textbox(label="Prompt")
104
  negative_prompt = gr.Textbox(label="Negative prompt", value="extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured")
105
  guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=7.5)
106
- steps = gr.Slider(label="Inference Steps", minimum="25", maximum="50", step=1, value=25)
107
  with gr.Column():
108
  preprocessor = gr.Dropdown(label="Preprocessor", choices=["canny"], value="canny", interactive=False, info="For the moment, only canny is available")
109
- controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning Scale", minimum=0.1, maximum=0.9, step=0.01, value=0.5, type="float")
110
  seed = gr.Slider(label="seed", minimum=0, maximum=500000, step=1, value=42)
111
  use_custom_model = gr.Checkbox(label="Use a public custom model ?(optional)", value=False, info="To use a private model, you'll prefer to duplicate the space with your own access token.")
112
  with gr.Row():
@@ -117,7 +117,7 @@ with gr.Blocks(css=css) as demo:
117
 
118
  submit_btn.click(
119
  fn = infer,
120
- inputs = [use_custom_model, model_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, steps, seed],
121
  outputs = [result]
122
  )
123
 
 
34
 
35
  #pipe.enable_model_cpu_offload()
36
 
37
+ def infer(use_custom_model, model_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, inf_steps, seed, progress=gr.Progress(track_tqdm=True)):
38
  prompt = prompt
39
  negative_prompt = negative_prompt
40
  generator = torch.Generator(device="cuda").manual_seed(seed)
 
61
  prompt,
62
  negative_prompt=negative_prompt,
63
  image=image,
64
+ controlnet_conditioning_scale=float(controlnet_conditioning_scale),
65
+ guidance_scale = float(guidance_scale),
66
+ num_inference_steps=inf_steps,
67
  generator=generator,
68
  cross_attention_kwargs={"scale": lora_scale}
69
  ).images
 
72
  prompt,
73
  negative_prompt=negative_prompt,
74
  image=image,
75
+ controlnet_conditioning_scale=float(controlnet_conditioning_scale),
76
+ guidance_scale = float(guidance_scale),
77
+ num_inference_steps=inf_steps,
78
  generator=generator,
79
  ).images
80
 
 
103
  prompt = gr.Textbox(label="Prompt")
104
  negative_prompt = gr.Textbox(label="Negative prompt", value="extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured")
105
  guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=7.5)
106
+ inf_steps = gr.Slider(label="Inference Steps", minimum="25", maximum="50", step=1, value=25)
107
  with gr.Column():
108
  preprocessor = gr.Dropdown(label="Preprocessor", choices=["canny"], value="canny", interactive=False, info="For the moment, only canny is available")
109
+ controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning Scale", minimum=0.1, maximum=0.9, step=0.01, value=0.5)
110
  seed = gr.Slider(label="seed", minimum=0, maximum=500000, step=1, value=42)
111
  use_custom_model = gr.Checkbox(label="Use a public custom model ?(optional)", value=False, info="To use a private model, you'll prefer to duplicate the space with your own access token.")
112
  with gr.Row():
 
117
 
118
  submit_btn.click(
119
  fn = infer,
120
+ inputs = [use_custom_model, model_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, inf_steps, seed],
121
  outputs = [result]
122
  )
123