fffiloni commited on
Commit
0699667
·
1 Parent(s): 2c60f43

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -6
app.py CHANGED
@@ -28,14 +28,15 @@ pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
28
  )
29
  pipe.to("cuda")
30
 
31
- custom_model = "fffiloni/eugene_decors_jour"
32
-
33
- # This is where you load your trained weights
34
- pipe.load_lora_weights(custom_model, weight_name="pytorch_lora_weights.safetensors", use_auth_token=True)
35
 
36
  #pipe.enable_model_cpu_offload()
37
 
38
- def infer(image_in, prompt, controlnet_conditioning_scale, guidance_scale):
 
 
 
 
 
39
  prompt = prompt
40
  negative_prompt = ""
41
 
@@ -58,6 +59,7 @@ def infer(image_in, prompt, controlnet_conditioning_scale, guidance_scale):
58
  controlnet_conditioning_scale=controlnet_conditioning_scale,
59
  guidance_scale = guidance_scale,
60
  num_inference_steps=50,
 
61
  cross_attention_kwargs={"scale": lora_scale}
62
  ).images
63
 
@@ -67,16 +69,19 @@ def infer(image_in, prompt, controlnet_conditioning_scale, guidance_scale):
67
 
68
  with gr.Blocks() as demo:
69
  with gr.Column():
 
70
  image_in = gr.Image(source="upload", type="filepath")
71
  prompt = gr.Textbox(label="Prompt")
72
  guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=7.5, type="float")
73
  controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning Scale", minimum=0.1, maximum=0.9, step=0.01, value=0.5, type="float")
 
 
74
  submit_btn = gr.Button("Submit")
75
  result = gr.Image(label="Result")
76
 
77
  submit_btn.click(
78
  fn = infer,
79
- inputs = [image_in, prompt, controlnet_conditioning_scale, guidance_scale ],
80
  outputs = [result]
81
  )
82
 
 
28
  )
29
  pipe.to("cuda")
30
 
 
 
 
 
31
 
32
  #pipe.enable_model_cpu_offload()
33
 
34
+ def infer(model_name, image_in, prompt, controlnet_conditioning_scale, guidance_scale, seed):
35
+ custom_model = model_name
36
+
37
+ # This is where you load your trained weights
38
+ pipe.load_lora_weights(custom_model, weight_name="pytorch_lora_weights.safetensors", use_auth_token=True)
39
+
40
  prompt = prompt
41
  negative_prompt = ""
42
 
 
59
  controlnet_conditioning_scale=controlnet_conditioning_scale,
60
  guidance_scale = guidance_scale,
61
  num_inference_steps=50,
62
+ seed=seed,
63
  cross_attention_kwargs={"scale": lora_scale}
64
  ).images
65
 
 
69
 
70
  with gr.Blocks() as demo:
71
  with gr.Column():
72
+ model_name = gr.Textbox(label="Model to use", placeholder="username/my_model"
73
  image_in = gr.Image(source="upload", type="filepath")
74
  prompt = gr.Textbox(label="Prompt")
75
  guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=7.5, type="float")
76
  controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning Scale", minimum=0.1, maximum=0.9, step=0.01, value=0.5, type="float")
77
+ seed = gr.Slider(label="seed", minimum=0, maximum=500000, step=1, value=42)
78
+
79
  submit_btn = gr.Button("Submit")
80
  result = gr.Image(label="Result")
81
 
82
  submit_btn.click(
83
  fn = infer,
84
+ inputs = [model_name, image_in, prompt, controlnet_conditioning_scale, guidance_scale, seed],
85
  outputs = [result]
86
  )
87