fffiloni commited on
Commit
331eca2
·
1 Parent(s): be9073e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -18
app.py CHANGED
@@ -13,6 +13,7 @@ import numpy as np
13
  import cv2
14
 
15
  vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
 
16
  controlnet = ControlNetModel.from_pretrained(
17
  "diffusers/controlnet-canny-sdxl-1.0",
18
  torch_dtype=torch.float16
@@ -26,21 +27,15 @@ pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
26
  variant="fp16",
27
  use_safetensors=True
28
  )
 
29
  pipe.to("cuda")
30
- generator = torch.Generator(device="cuda")
31
 
32
- #pipe.enable_model_cpu_offload()
33
 
34
- def infer(use_custom_model, model_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, seed):
35
- if use_custom_model:
36
- custom_model = model_name
37
 
38
- # This is where you load your trained weights
39
- pipe.load_lora_weights(custom_model, use_auth_token=True)
40
-
41
- prompt = prompt
42
- negative_prompt = negative_prompt
43
 
 
 
44
  if preprocessor == "canny":
45
 
46
  image = load_image(image_in)
@@ -50,6 +45,16 @@ def infer(use_custom_model, model_name, custom_lora_weight, image_in, prompt, ne
50
  image = image[:, :, None]
51
  image = np.concatenate([image, image, image], axis=2)
52
  image = Image.fromarray(image)
 
 
 
 
 
 
 
 
 
 
53
 
54
  if use_custom_model:
55
  lora_scale=custom_lora_weight
@@ -60,8 +65,8 @@ def infer(use_custom_model, model_name, custom_lora_weight, image_in, prompt, ne
60
  image=image,
61
  controlnet_conditioning_scale=controlnet_conditioning_scale,
62
  guidance_scale = guidance_scale,
63
- num_inference_steps=50,
64
- generator=generator.manual_seed(seed),
65
  cross_attention_kwargs={"scale": lora_scale}
66
  ).images
67
  else:
@@ -71,8 +76,8 @@ def infer(use_custom_model, model_name, custom_lora_weight, image_in, prompt, ne
71
  image=image,
72
  controlnet_conditioning_scale=controlnet_conditioning_scale,
73
  guidance_scale = guidance_scale,
74
- num_inference_steps=50,
75
- generator=generator.manual_seed(seed),
76
  ).images
77
 
78
  images[0].save(f"result.png")
@@ -88,9 +93,9 @@ css="""
88
  """
89
  with gr.Blocks(css=css) as demo:
90
  with gr.Column(elem_id="col-container"):
91
- gr.Markdown("""
92
- # SD-XL Control LoRas
93
- Use StableDiffusion XL with ControlNet pretrained LoRas
94
 
95
  """)
96
 
@@ -100,6 +105,7 @@ Use StableDiffusion XL with ControlNet pretrained LoRas
100
  prompt = gr.Textbox(label="Prompt")
101
  negative_prompt = gr.Textbox(label="Negative prompt", value="extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured")
102
  guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=7.5)
 
103
  with gr.Column():
104
  preprocessor = gr.Dropdown(label="Preprocessor", choices=["canny"], value="canny", interactive=False, info="For the moment, only canny is available")
105
  controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning Scale", minimum=0.1, maximum=0.9, step=0.01, value=0.5, type="float")
@@ -113,7 +119,7 @@ Use StableDiffusion XL with ControlNet pretrained LoRas
113
 
114
  submit_btn.click(
115
  fn = infer,
116
- inputs = [use_custom_model, model_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, seed],
117
  outputs = [result]
118
  )
119
 
 
13
  import cv2
14
 
15
  vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
16
+
17
  controlnet = ControlNetModel.from_pretrained(
18
  "diffusers/controlnet-canny-sdxl-1.0",
19
  torch_dtype=torch.float16
 
27
  variant="fp16",
28
  use_safetensors=True
29
  )
30
+
31
  pipe.to("cuda")
 
32
 
 
33
 
 
 
 
34
 
35
+ #pipe.enable_model_cpu_offload()
 
 
 
 
36
 
37
+ def infer(use_custom_model, model_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, steps, seed, progress=gr.Progress(track_tqdm=True)):
38
+
39
  if preprocessor == "canny":
40
 
41
  image = load_image(image_in)
 
45
  image = image[:, :, None]
46
  image = np.concatenate([image, image, image], axis=2)
47
  image = Image.fromarray(image)
48
+
49
+ if use_custom_model:
50
+ custom_model = model_name
51
+
52
+ # This is where you load your trained weights
53
+ pipe.load_lora_weights(custom_model, use_auth_token=True)
54
+
55
+ prompt = prompt
56
+ negative_prompt = negative_prompt
57
+ generator = torch.Generator(device="cuda").manual_seed(seed)
58
 
59
  if use_custom_model:
60
  lora_scale=custom_lora_weight
 
65
  image=image,
66
  controlnet_conditioning_scale=controlnet_conditioning_scale,
67
  guidance_scale = guidance_scale,
68
+ num_inference_steps=steps,
69
+ generator=generator,
70
  cross_attention_kwargs={"scale": lora_scale}
71
  ).images
72
  else:
 
76
  image=image,
77
  controlnet_conditioning_scale=controlnet_conditioning_scale,
78
  guidance_scale = guidance_scale,
79
+ num_inference_steps=steps,
80
+ generator=generator,
81
  ).images
82
 
83
  images[0].save(f"result.png")
 
93
  """
94
  with gr.Blocks(css=css) as demo:
95
  with gr.Column(elem_id="col-container"):
96
+ gr.HTML("""
97
+ <h2 style="text-align: center;>SD-XL Control LoRas</h2>
98
+ <p style="text-align: center;">Use StableDiffusion XL with <a href="https://huggingface.co/collections/diffusers/sdxl-controlnets-64f9c35846f3f06f5abe351f">Diffusers' SDXL ControlNets</a></p>
99
 
100
  """)
101
 
 
105
  prompt = gr.Textbox(label="Prompt")
106
  negative_prompt = gr.Textbox(label="Negative prompt", value="extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured")
107
  guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=7.5)
108
+ steps = gr.Slider(label="Inference Steps", minimum="25", maximum="50", step=1, value=25)
109
  with gr.Column():
110
  preprocessor = gr.Dropdown(label="Preprocessor", choices=["canny"], value="canny", interactive=False, info="For the moment, only canny is available")
111
  controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning Scale", minimum=0.1, maximum=0.9, step=0.01, value=0.5, type="float")
 
119
 
120
  submit_btn.click(
121
  fn = infer,
122
+ inputs = [use_custom_model, model_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, steps, seed],
123
  outputs = [result]
124
  )
125