fffiloni commited on
Commit
b571647
·
1 Parent(s): 8d07e5f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -3
app.py CHANGED
@@ -36,7 +36,7 @@ def infer(use_custom_model, model_name, image_in, prompt, preprocessor, controln
36
  custom_model = model_name
37
 
38
  # This is where you load your trained weights
39
- pipe.load_lora_weights(custom_model, weight_name="pytorch_lora_weights.safetensors", use_auth_token=True)
40
 
41
  prompt = prompt
42
  negative_prompt = "extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured"
@@ -83,6 +83,7 @@ css="""
83
  #col-container{
84
  margin: 0 auto;
85
  max-width: 680px;
 
86
  }
87
  """
88
  with gr.Blocks(css=css) as demo:
@@ -92,11 +93,11 @@ with gr.Blocks(css=css) as demo:
92
  Use StableDiffusion XL with ControlNet pretrained LoRas
93
 
94
  """)
95
- use_custom_model = gr.Checkbox(label="Use a custom model ?", value=False)
96
  model_name = gr.Textbox(label="Model to use", placeholder="username/my_model")
97
  image_in = gr.Image(source="upload", type="filepath")
98
  prompt = gr.Textbox(label="Prompt")
99
- preprocessor = gr.Dropdown(label="Preprocessor", choices=["canny"], value="canny")
100
  guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=7.5, type="float")
101
  controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning Scale", minimum=0.1, maximum=0.9, step=0.01, value=0.5, type="float")
102
  seed = gr.Slider(label="seed", minimum=0, maximum=500000, step=1, value=42)
 
36
  custom_model = model_name
37
 
38
  # This is where you load your trained weights
39
+ pipe.load_lora_weights(custom_model, use_auth_token=True)
40
 
41
  prompt = prompt
42
  negative_prompt = "extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured"
 
83
  #col-container{
84
  margin: 0 auto;
85
  max-width: 680px;
86
+ text-align: center;
87
  }
88
  """
89
  with gr.Blocks(css=css) as demo:
 
93
  Use StableDiffusion XL with ControlNet pretrained LoRas
94
 
95
  """)
96
+ use_custom_model = gr.Checkbox(label="Use a public custom model ?(optional)", value=False, info="To use a private model, you'll prefer to duplicate the space with your own access token.")
97
  model_name = gr.Textbox(label="Model to use", placeholder="username/my_model")
98
  image_in = gr.Image(source="upload", type="filepath")
99
  prompt = gr.Textbox(label="Prompt")
100
+ preprocessor = gr.Dropdown(label="Preprocessor", choices=["canny"], value="canny", interactive=False)
101
  guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=7.5, type="float")
102
  controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning Scale", minimum=0.1, maximum=0.9, step=0.01, value=0.5, type="float")
103
  seed = gr.Slider(label="seed", minimum=0, maximum=500000, step=1, value=42)