File size: 3,891 Bytes
37ced70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from functools import partial
import torch
import numpy as np
import librosa
from librosa.filters import mel as librosa_mel_fn
from torchaudio.functional import resample as ta_resample_fn

MAX_WAV_VALUE = 32767.0  # NOTE: 32768.0 -1 to prevent int16 overflow (results in popping sound in corner cases)


def dynamic_range_compression(x, C=1, clip_val=1e-5):
    return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)


def dynamic_range_decompression(x, C=1):
    return np.exp(x) / C


def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
    return torch.log(torch.clamp(x, min=clip_val) * C)


def dynamic_range_decompression_torch(x, C=1):
    return torch.exp(x) / C


def spectral_normalize_torch(magnitudes):
    output = dynamic_range_compression_torch(magnitudes)
    return output


def spectral_de_normalize_torch(magnitudes):
    output = dynamic_range_decompression_torch(magnitudes)
    return output


mel_basis = {}
hann_window = {}


def mel_spectrogram(
    y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False
):
    global mel_basis, hann_window
    if fmax not in mel_basis:
        mel = librosa_mel_fn(
            sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
        )
        str_key_mel_basis = str(fmax) + "_" + str(y.device)
        mel_basis[str_key_mel_basis] = torch.from_numpy(mel).float().to(y.device)
        hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)

    y = torch.nn.functional.pad(
        y.unsqueeze(1),
        (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
        mode="reflect",
    )
    y = y.squeeze(1)

    # complex tensor as default, then use view_as_real for future pytorch compatibility
    spec = torch.stft(
        y,
        n_fft,
        hop_length=hop_size,
        win_length=win_size,
        window=hann_window[str(y.device)],
        center=center,
        pad_mode="reflect",
        normalized=False,
        onesided=True,
        return_complex=True,
    )
    spec = torch.view_as_real(spec)
    spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9))

    spec = torch.matmul(mel_basis[str_key_mel_basis], spec)
    spec = spectral_normalize_torch(spec)

    return spec


kaiser_best_resampling_fn = partial(
    ta_resample_fn, 
    resampling_method="sinc_interp_kaiser", # DO NOT CHANGE!
    rolloff=0.917347, # DO NOT CHANGE!
    beta=12.9846, # DO NOT CHANGE!
    lowpass_filter_width=50, # DO NOT CHANGE!
)


class MelSpectrogramExtractor(object):
    def __init__(
        self,
        n_fft=1024,
        win_size=1024,
        num_mels=100,
        hop_size=160,
        sampling_rate=16000,
        fmin=0,
        fmax=None,
    ):
        self.n_fft = n_fft
        self.win_size = win_size
        self.num_mels = num_mels
        self.hop_size = hop_size
        self.sampling_rate = sampling_rate
        self.fmin = fmin
        self.fmax = fmax

    def __call__(self, wav_path) -> np.ndarray:
        wav_data, wav_sr = librosa.load(wav_path, sr=None, mono=True)
        wav_data = torch.from_numpy(wav_data.copy()).unsqueeze(0)
        # for 16k wavs, up-downsample to reduce artifects
        if wav_sr == self.sampling_rate:
            wav_data = kaiser_best_resampling_fn(wav_data, orig_freq=wav_sr, new_freq=24000)
            wav_data = kaiser_best_resampling_fn(wav_data, orig_freq=24000, new_freq=self.sampling_rate)
        else:
            wav_data = kaiser_best_resampling_fn(wav_data, orig_freq=wav_sr, new_freq=self.sampling_rate)        

        # (1, num_mels, t)
        mel = mel_spectrogram(
            wav_data,
            self.n_fft,
            self.num_mels,
            self.sampling_rate,
            self.hop_size,
            self.win_size,
            self.fmin,
            self.fmax,
        )
        mel = mel.squeeze(0).transpose(1, 0)
        return mel  # (t, num_mels)