File size: 12,677 Bytes
37ced70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
# ported from: https://github.com/neonbjb/tortoise-tts
# ported from: https://github.com/coqui-ai/TTS/blob/dev/TTS/tts/layers/xtts/gpt.py

import functools
import math
import random

import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import GPT2Config, GPT2Model, GPT2PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions


class GPT2InferenceModel(GPT2PreTrainedModel):
    """Override GPT2LMHeadModel to allow for prefix conditioning."""

    def __init__(self, config, gpt, pos_emb, embeddings, norm, linear, kv_cache):
        super().__init__(config)
        self.transformer = gpt
        self.pos_embedding = pos_emb
        self.embeddings = embeddings
        self.final_norm = norm
        self.lm_head = nn.Sequential(norm, linear)
        self.kv_cache = kv_cache

    def store_prefix_emb(self, prefix_emb):
        self.cached_prefix_emb = prefix_emb

    def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
        token_type_ids = kwargs.get("token_type_ids", None)  # usually None
        if not self.kv_cache:
            past_key_values = None

        # only last token for inputs_ids if past is defined in kwargs
        if past_key_values is not None:
            input_ids = input_ids[:, -1].unsqueeze(-1)
            if token_type_ids is not None:
                token_type_ids = token_type_ids[:, -1].unsqueeze(-1)

        attention_mask = kwargs.get("attention_mask", None)
        position_ids = kwargs.get("position_ids", None)

        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values is not None:
                position_ids = position_ids[:, -1].unsqueeze(-1)
        else:
            position_ids = None
        return {
            "input_ids": input_ids,
            "past_key_values": past_key_values,
            "use_cache": kwargs.get("use_cache"),
            "position_ids": position_ids,
            "attention_mask": attention_mask,
            "token_type_ids": token_type_ids,
        }

    def forward(
        self,
        input_ids=None,
        past_key_values=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        labels=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        assert self.cached_prefix_emb is not None
        assert inputs_embeds is None  # Not supported by this inference model.
        assert labels is None  # Training not supported by this inference model.
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        # Create embedding
        prefix_len = self.cached_prefix_emb.shape[1]
        if input_ids.shape[1] != 1:
            gen_inputs = input_ids[:, prefix_len:]
            gen_emb = self.embeddings(gen_inputs)
            gen_emb = gen_emb + self.pos_embedding(gen_emb)
            if self.cached_prefix_emb.shape[0] != gen_emb.shape[0]:
                prefix_emb = self.cached_prefix_emb.repeat_interleave(
                    gen_emb.shape[0] // self.cached_prefix_emb.shape[0], 0
                )
            else:
                prefix_emb = self.cached_prefix_emb.to(gen_emb.dtype)
            emb = torch.cat([prefix_emb, gen_emb], dim=1)
        else:
            emb = self.embeddings(input_ids)
            emb = emb + self.pos_embedding.get_fixed_embedding(
                attention_mask.shape[1] - (prefix_len + 1), attention_mask.device
            )
        transformer_outputs = self.transformer(
            inputs_embeds=emb,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]
        lm_logits = self.lm_head(hidden_states)

        if not return_dict:
            return (lm_logits,) + transformer_outputs[1:]

        return CausalLMOutputWithCrossAttentions(
            loss=None,
            logits=lm_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
            cross_attentions=transformer_outputs.cross_attentions,
        )

    @staticmethod
    def _reorder_cache(past, beam_idx):
        """
        This function is used to re-order the :obj:`past_key_values` cache if
        :meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
        called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
        """
        return tuple(
            tuple(
                past_state.index_select(0, beam_idx.to(past_state.device))
                for past_state in layer_past
            )
            for layer_past in past
        )


def null_position_embeddings(range, dim):
    return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device)


class LearnedPositionEmbeddings(nn.Module):
    def __init__(self, seq_len, model_dim, init=0.02):
        super().__init__()
        self.emb = torch.nn.Embedding(seq_len, model_dim)
        # Initializing this way is standard for GPT-2
        self.emb.weight.data.normal_(mean=0.0, std=init)

    def forward(self, x):
        sl = x.shape[1]
        return self.emb(torch.arange(0, sl, device=x.device))

    def get_fixed_embedding(self, ind, dev):
        return self.emb(torch.tensor([ind], device=dev)).unsqueeze(0)


def build_hf_gpt_transformer(
    layers,
    model_dim,
    heads,
    max_mel_seq_len,
    max_text_seq_len,
    max_prompt_len,
    checkpointing,
):
    """
    GPT-2 implemented by the HuggingFace library.
    """
    gpt_config = GPT2Config(
        vocab_size=256,  # Unused.
        n_positions=max_mel_seq_len + max_text_seq_len + max_prompt_len,
        n_ctx=max_mel_seq_len + max_text_seq_len + max_prompt_len,
        n_embd=model_dim,
        n_layer=layers,
        n_head=heads,
        gradient_checkpointing=checkpointing,
        use_cache=not checkpointing,
    )
    gpt = GPT2Model(gpt_config)
    # Override the built in positional embeddings
    del gpt.wpe
    gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim)
    # Built-in token embeddings are unused.
    del gpt.wte

    mel_pos_emb = (
        LearnedPositionEmbeddings(max_mel_seq_len, model_dim)
        if max_mel_seq_len != -1
        else functools.partial(null_position_embeddings, dim=model_dim)
    )
    text_pos_emb = (
        LearnedPositionEmbeddings(max_text_seq_len, model_dim)
        if max_mel_seq_len != -1
        else functools.partial(null_position_embeddings, dim=model_dim)
    )
    return gpt, mel_pos_emb, text_pos_emb, None, None


class GPT(nn.Module):
    def __init__(
        self,
        start_text_token=261,
        stop_text_token=0,
        layers=8,
        model_dim=512,
        heads=8,
        max_text_tokens=120,
        max_mel_tokens=250,
        max_prompt_tokens=70,
        max_conditioning_inputs=1,
        code_stride_len=1024,
        number_text_tokens=256,
        num_audio_tokens=8194,
        start_audio_token=8192,
        stop_audio_token=8193,
        checkpointing=False,
        label_smoothing=0.0,
    ):
        """
        Args:

        """
        super().__init__()

        self.label_smoothing = label_smoothing
        self.number_text_tokens = number_text_tokens
        self.start_text_token = start_text_token
        self.stop_text_token = stop_text_token
        self.num_audio_tokens = num_audio_tokens
        self.start_audio_token = start_audio_token
        self.stop_audio_token = stop_audio_token
        self.start_prompt_token = start_audio_token
        self.stop_prompt_token = stop_audio_token
        self.layers = layers
        self.heads = heads
        self.model_dim = model_dim
        self.max_conditioning_inputs = max_conditioning_inputs
        self.max_gen_mel_tokens = max_mel_tokens - self.max_conditioning_inputs - 2
        self.max_mel_tokens = (
            -1
            if max_mel_tokens == -1
            else max_mel_tokens + 2 + self.max_conditioning_inputs
        )
        self.max_text_tokens = -1 if max_text_tokens == -1 else max_text_tokens + 2
        self.max_prompt_tokens = max_prompt_tokens
        self.code_stride_len = code_stride_len
        self.conditioning_dropout = nn.Dropout1d(0.1)
        self.text_embedding = nn.Embedding(self.number_text_tokens, model_dim)
        self.mel_embedding = nn.Embedding(self.num_audio_tokens, model_dim)

        (
            self.gpt,
            self.mel_pos_embedding,
            self.text_pos_embedding,
            self.mel_layer_pos_embedding,
            self.text_layer_pos_embedding,
        ) = build_hf_gpt_transformer(
            layers,
            model_dim,
            heads,
            self.max_mel_tokens,
            self.max_text_tokens,
            self.max_prompt_tokens,
            checkpointing,
        )

        self.final_norm = nn.LayerNorm(model_dim)
        self.text_head = nn.Linear(model_dim, self.number_text_tokens)
        self.mel_head = nn.Linear(model_dim, self.num_audio_tokens)

        # reference_embedding
        self.reference_embedding = nn.Sequential(
            nn.Linear(512, 256),
            nn.Tanh(),
            nn.Linear(256, self.model_dim),
        )

    def init_gpt_for_inference(self, kv_cache=True, use_deepspeed=False):
        seq_length = (
            self.max_prompt_tokens + self.max_mel_tokens + self.max_text_tokens + 1
        )
        gpt_config = GPT2Config(
            vocab_size=self.max_mel_tokens,
            n_positions=seq_length,
            n_ctx=seq_length,
            n_embd=self.model_dim,
            n_layer=self.layers,
            n_head=self.heads,
            gradient_checkpointing=False,
            use_cache=True,
        )
        self.gpt_inference = GPT2InferenceModel(
            gpt_config,
            self.gpt,
            self.mel_pos_embedding,
            self.mel_embedding,
            self.final_norm,
            self.mel_head,
            kv_cache=kv_cache,
        )
        self.gpt.wte = self.mel_embedding

    def inference(self, cond_latents, text_inputs, **hf_generate_kwargs):
        self.compute_embeddings(cond_latents, text_inputs)
        return self.generate(cond_latents, text_inputs, **hf_generate_kwargs)

    def compute_embeddings(
        self,
        cond_latents,
        text_inputs,
    ):
        text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token)
        text_inputs = F.pad(text_inputs, (1, 0), value=self.start_text_token)
        emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs)
        emb = torch.cat([cond_latents, emb], dim=1)
        self.gpt_inference.store_prefix_emb(emb)
        gpt_inputs = torch.full(
            (
                emb.shape[0],
                emb.shape[1] + 1,  # +1 for the start_audio_token
            ),
            fill_value=1,
            dtype=torch.long,
            device=text_inputs.device,
        )
        gpt_inputs[:, -1] = self.start_audio_token
        return gpt_inputs

    def generate(
        self,
        cond_latents,
        text_inputs,
        **hf_generate_kwargs,
    ):
        gpt_inputs = self.compute_embeddings(cond_latents, text_inputs)
        gen = self.gpt_inference.generate(
            gpt_inputs,
            bos_token_id=self.start_audio_token,
            pad_token_id=self.stop_audio_token,
            eos_token_id=self.stop_audio_token,
            max_length=self.max_gen_mel_tokens + gpt_inputs.shape[-1],
            **hf_generate_kwargs,
        )
        if "return_dict_in_generate" in hf_generate_kwargs:
            return gen.sequences[:, gpt_inputs.shape[1] :], gen
        return gen[:, gpt_inputs.shape[1] :]