Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2024 NVIDIA CORPORATION. | |
# Licensed under the MIT license. | |
import torch | |
import torch.nn as nn | |
from token2wav.alias_free_torch.resample import UpSample1d, DownSample1d | |
# load fused CUDA kernel: this enables importing anti_alias_activation_cuda | |
from token2wav.alias_free_cuda import load | |
load.load() | |
class FusedAntiAliasActivation(torch.autograd.Function): | |
""" | |
Assumes filter size 12, replication padding on upsampling, and logscale alpha/beta parameters as inputs | |
""" | |
def forward(ctx, inputs, ftr, alpha, beta): | |
import anti_alias_activation_cuda | |
activation_results = anti_alias_activation_cuda.forward( | |
inputs, ftr, alpha, beta | |
) | |
return activation_results | |
def backward(ctx, output_grads): | |
# TODO: implement bwd pass | |
raise NotImplementedError | |
return output_grads, None, None | |
class Activation1d(nn.Module): | |
def __init__( | |
self, | |
activation, | |
up_ratio: int = 2, | |
down_ratio: int = 2, | |
up_kernel_size: int = 12, | |
down_kernel_size: int = 12, | |
fused: bool = True, | |
): | |
super().__init__() | |
self.up_ratio = up_ratio | |
self.down_ratio = down_ratio | |
self.act = activation | |
self.upsample = UpSample1d(up_ratio, up_kernel_size) | |
self.downsample = DownSample1d(down_ratio, down_kernel_size) | |
self.fused = fused # whether to use fused CUDA kernel or not | |
def forward(self, x): | |
if not self.fused: | |
x = self.upsample(x) | |
x = self.act(x) | |
x = self.downsample(x) | |
return x | |
else: | |
if self.act.__class__.__name__ == "Snake": | |
beta = self.act.alpha.data # snake uses same params for alpha and beta | |
else: | |
beta = ( | |
self.act.beta.data | |
) # snakebeta uses different params for alpha and beta | |
alpha = self.act.alpha.data | |
if ( | |
not self.act.alpha_logscale | |
): # exp baked into cuda kernel, cancel it out with a log | |
alpha = torch.log(alpha) | |
beta = torch.log(beta) | |
x = FusedAntiAliasActivation.apply(x, self.upsample.filter, alpha, beta) | |
x = self.downsample(x) | |
return x | |