Spaces:
Running
on
Zero
Running
on
Zero
from librosa.filters import mel as librosa_mel_fn | |
from torch import nn | |
from torch.nn import functional as F | |
import math | |
import numpy as np | |
import torch | |
import torchaudio | |
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): | |
return torch.log(torch.clamp(x, min=clip_val) * C) | |
def spectral_normalize_torch(magnitudes): | |
output = dynamic_range_compression_torch(magnitudes) | |
return output | |
class TorchMelSpectrogram(nn.Module): | |
def __init__( | |
self, | |
filter_length=1024, | |
hop_length=160, | |
win_length=640, | |
n_mel_channels=80, | |
mel_fmin=0, | |
mel_fmax=8000, | |
sampling_rate=16000, | |
): | |
super().__init__() | |
self.filter_length = filter_length | |
self.hop_length = hop_length | |
self.win_length = win_length | |
self.n_mel_channels = n_mel_channels | |
self.mel_fmin = mel_fmin | |
self.mel_fmax = mel_fmax | |
self.sampling_rate = sampling_rate | |
self.mel_basis = {} | |
self.hann_window = {} | |
def forward(self, inp, length=None): | |
if len(inp.shape) == 3: | |
inp = inp.squeeze(1) if inp.shape[1] == 1 else inp.squeeze(2) | |
assert len(inp.shape) == 2 | |
y = inp | |
if len(list(self.mel_basis.keys())) == 0: | |
mel = librosa_mel_fn( | |
sr=self.sampling_rate, | |
n_fft=self.filter_length, | |
n_mels=self.n_mel_channels, | |
fmin=self.mel_fmin, | |
fmax=self.mel_fmax, | |
) | |
self.mel_basis[str(self.mel_fmax) + "_" + str(y.device)] = ( | |
torch.from_numpy(mel).float().to(y.device) | |
) | |
self.hann_window[str(y.device)] = torch.hann_window(self.win_length).to( | |
y.device | |
) | |
y = torch.nn.functional.pad( | |
y.unsqueeze(1), | |
( | |
int((self.filter_length - self.hop_length) / 2), | |
int((self.filter_length - self.hop_length) / 2), | |
), | |
mode="reflect", | |
) | |
y = y.squeeze(1) | |
# complex tensor as default, then use view_as_real for future pytorch compatibility | |
spec = torch.stft( | |
y, | |
self.filter_length, | |
hop_length=self.hop_length, | |
win_length=self.win_length, | |
window=self.hann_window[str(y.device)], | |
center=False, | |
pad_mode="reflect", | |
normalized=False, | |
onesided=True, | |
return_complex=True, | |
) | |
spec = torch.view_as_real(spec) | |
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9)) | |
spec = torch.matmul( | |
self.mel_basis[str(self.mel_fmax) + "_" + str(y.device)], spec | |
) | |
spec = spectral_normalize_torch(spec) | |
max_mel_length = math.ceil(y.shape[-1] / self.hop_length) | |
spec = spec[..., :max_mel_length].transpose(1, 2) | |
if length is None: | |
return spec | |
else: | |
spec_len = torch.ceil(length / self.hop_length).clamp(max=spec.shape[1]) | |
return spec, spec_len | |
def length_to_mask(length, max_len=None, dtype=None, device=None): | |
"""Creates a binary mask for each sequence. | |
Reference: https://discuss.pytorch.org/t/how-to-generate-variable-length-mask/23397/3 | |
Arguments | |
--------- | |
length : torch.LongTensor | |
Containing the length of each sequence in the batch. Must be 1D. | |
max_len : int | |
Max length for the mask, also the size of the second dimension. | |
dtype : torch.dtype, default: None | |
The dtype of the generated mask. | |
device: torch.device, default: None | |
The device to put the mask variable. | |
Returns | |
------- | |
mask : tensor | |
The binary mask. | |
Example | |
------- | |
>>> length=torch.Tensor([1,2,3]) | |
>>> mask=length_to_mask(length) | |
>>> mask | |
tensor([[1., 0., 0.], | |
[1., 1., 0.], | |
[1., 1., 1.]]) | |
""" | |
assert len(length.shape) == 1 | |
if max_len is None: | |
max_len = length.max().long().item() # using arange to generate mask | |
mask = torch.arange(max_len, device=length.device, dtype=length.dtype).expand( | |
len(length), max_len | |
) < length.unsqueeze(1) | |
if dtype is None: | |
dtype = length.dtype | |
if device is None: | |
device = length.device | |
mask = torch.as_tensor(mask, dtype=dtype, device=device) | |
return mask | |
def get_padding_elem(L_in: int, stride: int, kernel_size: int, dilation: int): | |
"""This function computes the number of elements to add for zero-padding. | |
Arguments | |
--------- | |
L_in : int | |
stride: int | |
kernel_size : int | |
dilation : int | |
""" | |
if stride > 1: | |
n_steps = math.ceil(((L_in - kernel_size * dilation) / stride) + 1) | |
L_out = stride * (n_steps - 1) + kernel_size * dilation | |
padding = [kernel_size // 2, kernel_size // 2] | |
else: | |
L_out = (L_in - dilation * (kernel_size - 1) - 1) // stride + 1 | |
padding = [(L_in - L_out) // 2, (L_in - L_out) // 2] | |
return padding | |
class Conv1d(nn.Module): | |
"""This function implements 1d convolution. | |
Arguments | |
--------- | |
out_channels : int | |
It is the number of output channels. | |
kernel_size : int | |
Kernel size of the convolutional filters. | |
input_shape : tuple | |
The shape of the input. Alternatively use ``in_channels``. | |
in_channels : int | |
The number of input channels. Alternatively use ``input_shape``. | |
stride : int | |
Stride factor of the convolutional filters. When the stride factor > 1, | |
a decimation in time is performed. | |
dilation : int | |
Dilation factor of the convolutional filters. | |
padding : str | |
(same, valid, causal). If "valid", no padding is performed. | |
If "same" and stride is 1, output shape is the same as the input shape. | |
"causal" results in causal (dilated) convolutions. | |
padding_mode : str | |
This flag specifies the type of padding. See torch.nn documentation | |
for more information. | |
skip_transpose : bool | |
If False, uses batch x time x channel convention of speechbrain. | |
If True, uses batch x channel x time convention. | |
Example | |
------- | |
>>> inp_tensor = torch.rand([10, 40, 16]) | |
>>> cnn_1d = Conv1d( | |
... input_shape=inp_tensor.shape, out_channels=8, kernel_size=5 | |
... ) | |
>>> out_tensor = cnn_1d(inp_tensor) | |
>>> out_tensor.shape | |
torch.Size([10, 40, 8]) | |
""" | |
def __init__( | |
self, | |
out_channels, | |
kernel_size, | |
input_shape=None, | |
in_channels=None, | |
stride=1, | |
dilation=1, | |
padding="same", | |
groups=1, | |
bias=True, | |
padding_mode="reflect", | |
skip_transpose=True, | |
): | |
super().__init__() | |
self.kernel_size = kernel_size | |
self.stride = stride | |
self.dilation = dilation | |
self.padding = padding | |
self.padding_mode = padding_mode | |
self.unsqueeze = False | |
self.skip_transpose = skip_transpose | |
if input_shape is None and in_channels is None: | |
raise ValueError("Must provide one of input_shape or in_channels") | |
if in_channels is None: | |
in_channels = self._check_input_shape(input_shape) | |
self.conv = nn.Conv1d( | |
in_channels, | |
out_channels, | |
self.kernel_size, | |
stride=self.stride, | |
dilation=self.dilation, | |
padding=0, | |
groups=groups, | |
bias=bias, | |
) | |
def forward(self, x): | |
"""Returns the output of the convolution. | |
Arguments | |
--------- | |
x : torch.Tensor (batch, time, channel) | |
input to convolve. 2d or 4d tensors are expected. | |
""" | |
if not self.skip_transpose: | |
x = x.transpose(1, -1) | |
if self.unsqueeze: | |
x = x.unsqueeze(1) | |
if self.padding == "same": | |
x = self._manage_padding(x, self.kernel_size, self.dilation, self.stride) | |
elif self.padding == "causal": | |
num_pad = (self.kernel_size - 1) * self.dilation | |
x = F.pad(x, (num_pad, 0)) | |
elif self.padding == "valid": | |
pass | |
else: | |
raise ValueError( | |
"Padding must be 'same', 'valid' or 'causal'. Got " + self.padding | |
) | |
wx = self.conv(x) | |
if self.unsqueeze: | |
wx = wx.squeeze(1) | |
if not self.skip_transpose: | |
wx = wx.transpose(1, -1) | |
return wx | |
def _manage_padding( | |
self, | |
x, | |
kernel_size: int, | |
dilation: int, | |
stride: int, | |
): | |
"""This function performs zero-padding on the time axis | |
such that their lengths is unchanged after the convolution. | |
Arguments | |
--------- | |
x : torch.Tensor | |
Input tensor. | |
kernel_size : int | |
Size of kernel. | |
dilation : int | |
Dilation used. | |
stride : int | |
Stride. | |
""" | |
# Detecting input shape | |
L_in = x.shape[-1] | |
# Time padding | |
padding = get_padding_elem(L_in, stride, kernel_size, dilation) | |
# Applying padding | |
x = F.pad(x, padding, mode=self.padding_mode) | |
return x | |
def _check_input_shape(self, shape): | |
"""Checks the input shape and returns the number of input channels.""" | |
if len(shape) == 2: | |
self.unsqueeze = True | |
in_channels = 1 | |
elif self.skip_transpose: | |
in_channels = shape[1] | |
elif len(shape) == 3: | |
in_channels = shape[2] | |
else: | |
raise ValueError("conv1d expects 2d, 3d inputs. Got " + str(len(shape))) | |
# Kernel size must be odd | |
if self.kernel_size % 2 == 0: | |
raise ValueError( | |
"The field kernel size must be an odd number. Got %s." | |
% (self.kernel_size) | |
) | |
return in_channels | |
class Fp32BatchNorm(nn.Module): | |
def __init__(self, sync=True, *args, **kwargs): | |
super().__init__() | |
if ( | |
not torch.distributed.is_initialized() | |
or torch.distributed.get_world_size() == 1 | |
): | |
sync = False | |
if sync: | |
self.bn = nn.SyncBatchNorm(*args, **kwargs) | |
else: | |
self.bn = nn.BatchNorm1d(*args, **kwargs) | |
self.sync = sync | |
def forward(self, input): | |
if self.bn.running_mean.dtype != torch.float: | |
if self.sync: | |
self.bn.running_mean = self.bn.running_mean.float() | |
self.bn.running_var = self.bn.running_var.float() | |
if self.bn.affine: | |
try: | |
self.bn.weight = self.bn.weight.float() | |
self.bn.bias = self.bn.bias.float() | |
except: | |
self.bn.float() | |
else: | |
self.bn.float() | |
output = self.bn(input.float()) | |
return output.type_as(input) | |
class BatchNorm1d(nn.Module): | |
"""Applies 1d batch normalization to the input tensor. | |
Arguments | |
--------- | |
input_shape : tuple | |
The expected shape of the input. Alternatively, use ``input_size``. | |
input_size : int | |
The expected size of the input. Alternatively, use ``input_shape``. | |
eps : float | |
This value is added to std deviation estimation to improve the numerical | |
stability. | |
momentum : float | |
It is a value used for the running_mean and running_var computation. | |
affine : bool | |
When set to True, the affine parameters are learned. | |
track_running_stats : bool | |
When set to True, this module tracks the running mean and variance, | |
and when set to False, this module does not track such statistics. | |
combine_batch_time : bool | |
When true, it combines batch an time axis. | |
Example | |
------- | |
>>> input = torch.randn(100, 10) | |
>>> norm = BatchNorm1d(input_shape=input.shape) | |
>>> output = norm(input) | |
>>> output.shape | |
torch.Size([100, 10]) | |
""" | |
def __init__( | |
self, | |
input_shape=None, | |
input_size=None, | |
eps=1e-05, | |
momentum=0.1, | |
affine=True, | |
track_running_stats=True, | |
combine_batch_time=False, | |
skip_transpose=True, | |
enabled=True, | |
): | |
super().__init__() | |
self.combine_batch_time = combine_batch_time | |
self.skip_transpose = skip_transpose | |
if input_size is None and skip_transpose: | |
input_size = input_shape[1] | |
elif input_size is None: | |
input_size = input_shape[-1] | |
if enabled: | |
self.norm = Fp32BatchNorm( | |
num_features=input_size, | |
eps=eps, | |
momentum=momentum, | |
affine=affine, | |
track_running_stats=track_running_stats, | |
) | |
else: | |
self.norm = nn.Identity() | |
def forward(self, x): | |
"""Returns the normalized input tensor. | |
Arguments | |
--------- | |
x : torch.Tensor (batch, time, [channels]) | |
input to normalize. 2d or 3d tensors are expected in input | |
4d tensors can be used when combine_dims=True. | |
""" | |
shape_or = x.shape | |
if self.combine_batch_time: | |
if x.ndim == 3: | |
x = x.reshape(shape_or[0] * shape_or[1], shape_or[2]) | |
else: | |
x = x.reshape(shape_or[0] * shape_or[1], shape_or[3], shape_or[2]) | |
elif not self.skip_transpose: | |
x = x.transpose(-1, 1) | |
x_n = self.norm(x) | |
if self.combine_batch_time: | |
x_n = x_n.reshape(shape_or) | |
elif not self.skip_transpose: | |
x_n = x_n.transpose(1, -1) | |
return x_n | |
class Linear(torch.nn.Module): | |
"""Computes a linear transformation y = wx + b. | |
Arguments | |
--------- | |
n_neurons : int | |
It is the number of output neurons (i.e, the dimensionality of the | |
output). | |
bias : bool | |
If True, the additive bias b is adopted. | |
combine_dims : bool | |
If True and the input is 4D, combine 3rd and 4th dimensions of input. | |
Example | |
------- | |
>>> inputs = torch.rand(10, 50, 40) | |
>>> lin_t = Linear(input_shape=(10, 50, 40), n_neurons=100) | |
>>> output = lin_t(inputs) | |
>>> output.shape | |
torch.Size([10, 50, 100]) | |
""" | |
def __init__( | |
self, | |
n_neurons, | |
input_shape=None, | |
input_size=None, | |
bias=True, | |
combine_dims=False, | |
): | |
super().__init__() | |
self.combine_dims = combine_dims | |
if input_shape is None and input_size is None: | |
raise ValueError("Expected one of input_shape or input_size") | |
if input_size is None: | |
input_size = input_shape[-1] | |
if len(input_shape) == 4 and self.combine_dims: | |
input_size = input_shape[2] * input_shape[3] | |
# Weights are initialized following pytorch approach | |
self.w = nn.Linear(input_size, n_neurons, bias=bias) | |
def forward(self, x): | |
"""Returns the linear transformation of input tensor. | |
Arguments | |
--------- | |
x : torch.Tensor | |
Input to transform linearly. | |
""" | |
if x.ndim == 4 and self.combine_dims: | |
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]) | |
wx = self.w(x) | |
return wx | |
class TDNNBlock(nn.Module): | |
"""An implementation of TDNN. | |
Arguments | |
---------- | |
in_channels : int | |
Number of input channels. | |
out_channels : int | |
The number of output channels. | |
kernel_size : int | |
The kernel size of the TDNN blocks. | |
dilation : int | |
The dilation of the Res2Net block. | |
activation : torch class | |
A class for constructing the activation layers. | |
Example | |
------- | |
>>> inp_tensor = torch.rand([8, 120, 64]).transpose(1, 2) | |
>>> layer = TDNNBlock(64, 64, kernel_size=3, dilation=1) | |
>>> out_tensor = layer(inp_tensor).transpose(1, 2) | |
>>> out_tensor.shape | |
torch.Size([8, 120, 64]) | |
""" | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
dilation, | |
activation=nn.ReLU, | |
batch_norm=True, | |
): | |
super(TDNNBlock, self).__init__() | |
self.conv = Conv1d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
dilation=dilation, | |
) | |
self.activation = activation() | |
self.norm = BatchNorm1d(input_size=out_channels, enabled=batch_norm) | |
def forward(self, x): | |
return self.norm(self.activation(self.conv(x))) | |
class Res2NetBlock(torch.nn.Module): | |
"""An implementation of Res2NetBlock w/ dilation. | |
Arguments | |
--------- | |
in_channels : int | |
The number of channels expected in the input. | |
out_channels : int | |
The number of output channels. | |
scale : int | |
The scale of the Res2Net block. | |
kernel_size: int | |
The kernel size of the Res2Net block. | |
dilation : int | |
The dilation of the Res2Net block. | |
Example | |
------- | |
>>> inp_tensor = torch.rand([8, 120, 64]).transpose(1, 2) | |
>>> layer = Res2NetBlock(64, 64, scale=4, dilation=3) | |
>>> out_tensor = layer(inp_tensor).transpose(1, 2) | |
>>> out_tensor.shape | |
torch.Size([8, 120, 64]) | |
""" | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
scale=8, | |
kernel_size=3, | |
dilation=1, | |
batch_norm=True, | |
): | |
super(Res2NetBlock, self).__init__() | |
assert in_channels % scale == 0 | |
assert out_channels % scale == 0 | |
in_channel = in_channels // scale | |
hidden_channel = out_channels // scale | |
self.blocks = nn.ModuleList( | |
[ | |
TDNNBlock( | |
in_channel, | |
hidden_channel, | |
kernel_size=kernel_size, | |
dilation=dilation, | |
batch_norm=batch_norm, | |
) | |
for i in range(scale - 1) | |
] | |
) | |
self.scale = scale | |
def forward(self, x): | |
y = [] | |
for i, x_i in enumerate(torch.chunk(x, self.scale, dim=1)): | |
if i == 0: | |
y_i = x_i | |
elif i == 1: | |
y_i = self.blocks[i - 1](x_i) | |
else: | |
y_i = self.blocks[i - 1](x_i + y_i) | |
y.append(y_i) | |
y = torch.cat(y, dim=1) | |
return y | |
class SEBlock(nn.Module): | |
"""An implementation of squeeze-and-excitation block. | |
Arguments | |
--------- | |
in_channels : int | |
The number of input channels. | |
se_channels : int | |
The number of output channels after squeeze. | |
out_channels : int | |
The number of output channels. | |
Example | |
------- | |
>>> inp_tensor = torch.rand([8, 120, 64]).transpose(1, 2) | |
>>> se_layer = SEBlock(64, 16, 64) | |
>>> lengths = torch.rand((8,)) | |
>>> out_tensor = se_layer(inp_tensor, lengths).transpose(1, 2) | |
>>> out_tensor.shape | |
torch.Size([8, 120, 64]) | |
""" | |
def __init__(self, in_channels, se_channels, out_channels): | |
super(SEBlock, self).__init__() | |
self.conv1 = Conv1d( | |
in_channels=in_channels, out_channels=se_channels, kernel_size=1 | |
) | |
self.relu = torch.nn.ReLU(inplace=True) | |
self.conv2 = Conv1d( | |
in_channels=se_channels, out_channels=out_channels, kernel_size=1 | |
) | |
self.sigmoid = torch.nn.Sigmoid() | |
def forward(self, x, lengths=None): | |
L = x.shape[-1] | |
if lengths is not None: | |
mask = length_to_mask(lengths * L, max_len=L, device=x.device) | |
mask = mask.unsqueeze(1) | |
total = mask.sum(dim=2, keepdim=True) | |
s = (x * mask).sum(dim=2, keepdim=True) / total | |
else: | |
s = x.mean(dim=2, keepdim=True) | |
s = self.relu(self.conv1(s)) | |
s = self.sigmoid(self.conv2(s)) | |
return s * x | |
class AttentiveStatisticsPooling(nn.Module): | |
"""This class implements an attentive statistic pooling layer for each channel. | |
It returns the concatenated mean and std of the input tensor. | |
Arguments | |
--------- | |
channels: int | |
The number of input channels. | |
attention_channels: int | |
The number of attention channels. | |
Example | |
------- | |
>>> inp_tensor = torch.rand([8, 120, 64]).transpose(1, 2) | |
>>> asp_layer = AttentiveStatisticsPooling(64) | |
>>> lengths = torch.rand((8,)) | |
>>> out_tensor = asp_layer(inp_tensor, lengths).transpose(1, 2) | |
>>> out_tensor.shape | |
torch.Size([8, 1, 128]) | |
""" | |
def __init__( | |
self, channels, attention_channels=128, global_context=True, batch_norm=True | |
): | |
super().__init__() | |
self.eps = 1e-12 | |
self.global_context = global_context | |
if global_context: | |
self.tdnn = TDNNBlock( | |
channels * 3, attention_channels, 1, 1, batch_norm=batch_norm | |
) | |
else: | |
self.tdnn = TDNNBlock( | |
channels, attention_channels, 1, 1, batch_norm, batch_norm | |
) | |
self.tanh = nn.Tanh() | |
self.conv = Conv1d( | |
in_channels=attention_channels, out_channels=channels, kernel_size=1 | |
) | |
def forward(self, x, lengths=None): | |
"""Calculates mean and std for a batch (input tensor). | |
Arguments | |
--------- | |
x : torch.Tensor | |
Tensor of shape [N, C, L]. | |
""" | |
L = x.shape[-1] | |
def _compute_statistics(x, m, dim=2, eps=self.eps): | |
mean = (m * x).sum(dim) | |
std = torch.sqrt((m * (x - mean.unsqueeze(dim)).pow(2)).sum(dim).clamp(eps)) | |
return mean, std | |
if lengths is None: | |
lengths = torch.ones(x.shape[0], device=x.device) | |
# Make binary mask of shape [N, 1, L] | |
mask = length_to_mask(lengths * L, max_len=L, device=x.device) | |
mask = mask.unsqueeze(1) | |
# Expand the temporal context of the pooling layer by allowing the | |
# self-attention to look at global properties of the utterance. | |
if self.global_context: | |
# torch.std is unstable for backward computation | |
# https://github.com/pytorch/pytorch/issues/4320 | |
total = mask.sum(dim=2, keepdim=True).float() | |
mean, std = _compute_statistics(x, mask / total) | |
mean = mean.unsqueeze(2).repeat(1, 1, L) | |
std = std.unsqueeze(2).repeat(1, 1, L) | |
attn = torch.cat([x, mean, std], dim=1) | |
else: | |
attn = x | |
# Apply layers | |
attn = self.conv(self.tanh(self.tdnn(attn))) | |
# Filter out zero-paddings | |
attn = attn.masked_fill(mask == 0, float("-inf")) | |
attn = F.softmax(attn, dim=2) | |
mean, std = _compute_statistics(x, attn) | |
# Append mean and std of the batch | |
pooled_stats = torch.cat((mean, std), dim=1) | |
pooled_stats = pooled_stats.unsqueeze(2) | |
return pooled_stats | |
class SERes2NetBlock(nn.Module): | |
"""An implementation of building block in ECAPA-TDNN, i.e., | |
TDNN-Res2Net-TDNN-SEBlock. | |
Arguments | |
---------- | |
out_channels: int | |
The number of output channels. | |
res2net_scale: int | |
The scale of the Res2Net block. | |
kernel_size: int | |
The kernel size of the TDNN blocks. | |
dilation: int | |
The dilation of the Res2Net block. | |
activation : torch class | |
A class for constructing the activation layers. | |
Example | |
------- | |
>>> x = torch.rand(8, 120, 64).transpose(1, 2) | |
>>> conv = SERes2NetBlock(64, 64, res2net_scale=4) | |
>>> out = conv(x).transpose(1, 2) | |
>>> out.shape | |
torch.Size([8, 120, 64]) | |
""" | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
res2net_scale=8, | |
se_channels=128, | |
kernel_size=1, | |
dilation=1, | |
activation=torch.nn.ReLU, | |
batch_norm=True, | |
): | |
super().__init__() | |
self.out_channels = out_channels | |
self.tdnn1 = TDNNBlock( | |
in_channels, | |
out_channels, | |
kernel_size=1, | |
dilation=1, | |
activation=activation, | |
batch_norm=batch_norm, | |
) | |
self.res2net_block = Res2NetBlock( | |
out_channels, | |
out_channels, | |
res2net_scale, | |
kernel_size, | |
dilation, | |
batch_norm=batch_norm, | |
) | |
self.tdnn2 = TDNNBlock( | |
out_channels, | |
out_channels, | |
kernel_size=1, | |
dilation=1, | |
activation=activation, | |
batch_norm=batch_norm, | |
) | |
self.se_block = SEBlock(out_channels, se_channels, out_channels) | |
self.shortcut = None | |
if in_channels != out_channels: | |
self.shortcut = Conv1d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=1, | |
) | |
def forward(self, x, lengths=None): | |
residual = x | |
if self.shortcut: | |
residual = self.shortcut(x) | |
x = self.tdnn1(x) | |
x = self.res2net_block(x) | |
x = self.tdnn2(x) | |
x = self.se_block(x, lengths) | |
return x + residual | |
class ECAPA_TDNN(torch.nn.Module): | |
"""An implementation of the speaker embedding model in a paper. | |
"ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in | |
TDNN Based Speaker Verification" (https://arxiv.org/abs/2005.07143). | |
Arguments | |
--------- | |
device : str | |
Device used, e.g., "cpu" or "cuda". | |
activation : torch class | |
A class for constructing the activation layers. | |
channels : list of ints | |
Output channels for TDNN/SERes2Net layer. | |
kernel_sizes : list of ints | |
List of kernel sizes for each layer. | |
dilations : list of ints | |
List of dilations for kernels in each layer. | |
lin_neurons : int | |
Number of neurons in linear layers. | |
Example | |
------- | |
>>> input_feats = torch.rand([5, 120, 80]) | |
>>> compute_embedding = ECAPA_TDNN(80, lin_neurons=192) | |
>>> outputs = compute_embedding(input_feats) | |
>>> outputs.shape | |
torch.Size([5, 1, 192]) | |
""" | |
def __init__( | |
self, | |
input_size, | |
lin_neurons=192, | |
activation=torch.nn.ReLU, | |
channels=[512, 512, 512, 512, 1536], | |
kernel_sizes=[5, 3, 3, 3, 1], | |
dilations=[1, 2, 3, 4, 1], | |
attention_channels=128, | |
res2net_scale=8, | |
se_channels=128, | |
global_context=True, | |
batch_norm=True, | |
): | |
super().__init__() | |
assert len(channels) == len(kernel_sizes) | |
assert len(channels) == len(dilations) | |
self.channels = channels | |
self.blocks = nn.ModuleList() | |
# The initial TDNN layer | |
self.blocks.append( | |
TDNNBlock( | |
input_size, | |
channels[0], | |
kernel_sizes[0], | |
dilations[0], | |
activation, | |
batch_norm=batch_norm, | |
) | |
) | |
# SE-Res2Net layers | |
for i in range(1, len(channels) - 1): | |
self.blocks.append( | |
SERes2NetBlock( | |
channels[i - 1], | |
channels[i], | |
res2net_scale=res2net_scale, | |
se_channels=se_channels, | |
kernel_size=kernel_sizes[i], | |
dilation=dilations[i], | |
activation=activation, | |
batch_norm=batch_norm, | |
) | |
) | |
# Multi-layer feature aggregation | |
self.mfa = TDNNBlock( | |
channels[-1], | |
channels[-1], | |
kernel_sizes[-1], | |
dilations[-1], | |
activation, | |
batch_norm=batch_norm, | |
) | |
# Attentive Statistical Pooling | |
self.asp = AttentiveStatisticsPooling( | |
channels[-1], | |
attention_channels=attention_channels, | |
global_context=global_context, | |
batch_norm=batch_norm, | |
) | |
self.asp_bn = BatchNorm1d(input_size=channels[-1] * 2, enabled=batch_norm) | |
# Final linear transformation | |
self.fc = Conv1d( | |
in_channels=channels[-1] * 2, | |
out_channels=lin_neurons, | |
kernel_size=1, | |
) | |
# @torch.cuda.amp.autocast(enabled=True, dtype=torch.float32) | |
def forward(self, x, lengths=None): | |
"""Returns the embedding vector. | |
Arguments | |
--------- | |
x : torch.Tensor | |
Tensor of shape (batch, time, channel). | |
""" | |
# Minimize transpose for efficiency | |
x = x.transpose(1, 2) | |
xl = [] | |
for layer in self.blocks: | |
try: | |
x = layer(x, lengths=lengths) | |
except TypeError: | |
x = layer(x) | |
xl.append(x) | |
# Multi-layer feature aggregation | |
x = torch.cat(xl[1:], dim=1) | |
x = self.mfa(x) | |
# Attentive Statistical Pooling | |
x = self.asp(x, lengths=lengths) | |
x = self.asp_bn(x) | |
# Final linear transformation | |
x = self.fc(x) | |
x = x.squeeze(-1) | |
return x | |
class SpeakerEmbedddingExtractor(object): | |
def __init__(self, ckpt_path, device="cuda"): | |
# NOTE: The sampling rate is 16000 | |
self.mel_extractor = TorchMelSpectrogram() | |
self.mel_extractor.to(device) | |
model = ECAPA_TDNN( | |
80, | |
512, | |
channels=[512, 512, 512, 512, 1536], | |
kernel_sizes=[5, 3, 3, 3, 1], | |
dilations=[1, 2, 3, 4, 1], | |
attention_channels=128, | |
res2net_scale=4, | |
se_channels=128, | |
global_context=True, | |
batch_norm=True, | |
) | |
model.load_state_dict(torch.load(ckpt_path), strict=True) | |
model.eval() | |
self.model = model | |
self.model.to(device) | |
def __call__(self, wav): | |
# wav, sr = torchaudio.load(audio_path) | |
# assert sr == 16000, f"The sampling rate is not 16000" | |
# print(wav.shape) | |
mel = self.mel_extractor(wav.unsqueeze(0)) | |
spk = self.model(mel) | |
spk = spk[0] | |
return spk | |