hhguo's picture
update
37ced70
# ported from: https://github.com/neonbjb/tortoise-tts
# ported from: https://github.com/coqui-ai/TTS/blob/dev/TTS/tts/layers/xtts/gpt.py
import functools
import math
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import GPT2Config, GPT2Model, GPT2PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
class GPT2InferenceModel(GPT2PreTrainedModel):
"""Override GPT2LMHeadModel to allow for prefix conditioning."""
def __init__(self, config, gpt, pos_emb, embeddings, norm, linear, kv_cache):
super().__init__(config)
self.transformer = gpt
self.pos_embedding = pos_emb
self.embeddings = embeddings
self.final_norm = norm
self.lm_head = nn.Sequential(norm, linear)
self.kv_cache = kv_cache
def store_prefix_emb(self, prefix_emb):
self.cached_prefix_emb = prefix_emb
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
token_type_ids = kwargs.get("token_type_ids", None) # usually None
if not self.kv_cache:
past_key_values = None
# only last token for inputs_ids if past is defined in kwargs
if past_key_values is not None:
input_ids = input_ids[:, -1].unsqueeze(-1)
if token_type_ids is not None:
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
attention_mask = kwargs.get("attention_mask", None)
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values is not None:
position_ids = position_ids[:, -1].unsqueeze(-1)
else:
position_ids = None
return {
"input_ids": input_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"position_ids": position_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
def forward(
self,
input_ids=None,
past_key_values=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
assert self.cached_prefix_emb is not None
assert inputs_embeds is None # Not supported by this inference model.
assert labels is None # Training not supported by this inference model.
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# Create embedding
prefix_len = self.cached_prefix_emb.shape[1]
if input_ids.shape[1] != 1:
gen_inputs = input_ids[:, prefix_len:]
gen_emb = self.embeddings(gen_inputs)
gen_emb = gen_emb + self.pos_embedding(gen_emb)
if self.cached_prefix_emb.shape[0] != gen_emb.shape[0]:
prefix_emb = self.cached_prefix_emb.repeat_interleave(
gen_emb.shape[0] // self.cached_prefix_emb.shape[0], 0
)
else:
prefix_emb = self.cached_prefix_emb.to(gen_emb.dtype)
emb = torch.cat([prefix_emb, gen_emb], dim=1)
else:
emb = self.embeddings(input_ids)
emb = emb + self.pos_embedding.get_fixed_embedding(
attention_mask.shape[1] - (prefix_len + 1), attention_mask.device
)
transformer_outputs = self.transformer(
inputs_embeds=emb,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
lm_logits = self.lm_head(hidden_states)
if not return_dict:
return (lm_logits,) + transformer_outputs[1:]
return CausalLMOutputWithCrossAttentions(
loss=None,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
cross_attentions=transformer_outputs.cross_attentions,
)
@staticmethod
def _reorder_cache(past, beam_idx):
"""
This function is used to re-order the :obj:`past_key_values` cache if
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
"""
return tuple(
tuple(
past_state.index_select(0, beam_idx.to(past_state.device))
for past_state in layer_past
)
for layer_past in past
)
def null_position_embeddings(range, dim):
return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device)
class LearnedPositionEmbeddings(nn.Module):
def __init__(self, seq_len, model_dim, init=0.02):
super().__init__()
self.emb = torch.nn.Embedding(seq_len, model_dim)
# Initializing this way is standard for GPT-2
self.emb.weight.data.normal_(mean=0.0, std=init)
def forward(self, x):
sl = x.shape[1]
return self.emb(torch.arange(0, sl, device=x.device))
def get_fixed_embedding(self, ind, dev):
return self.emb(torch.tensor([ind], device=dev)).unsqueeze(0)
def build_hf_gpt_transformer(
layers,
model_dim,
heads,
max_mel_seq_len,
max_text_seq_len,
max_prompt_len,
checkpointing,
):
"""
GPT-2 implemented by the HuggingFace library.
"""
gpt_config = GPT2Config(
vocab_size=256, # Unused.
n_positions=max_mel_seq_len + max_text_seq_len + max_prompt_len,
n_ctx=max_mel_seq_len + max_text_seq_len + max_prompt_len,
n_embd=model_dim,
n_layer=layers,
n_head=heads,
gradient_checkpointing=checkpointing,
use_cache=not checkpointing,
)
gpt = GPT2Model(gpt_config)
# Override the built in positional embeddings
del gpt.wpe
gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim)
# Built-in token embeddings are unused.
del gpt.wte
mel_pos_emb = (
LearnedPositionEmbeddings(max_mel_seq_len, model_dim)
if max_mel_seq_len != -1
else functools.partial(null_position_embeddings, dim=model_dim)
)
text_pos_emb = (
LearnedPositionEmbeddings(max_text_seq_len, model_dim)
if max_mel_seq_len != -1
else functools.partial(null_position_embeddings, dim=model_dim)
)
return gpt, mel_pos_emb, text_pos_emb, None, None
class GPT(nn.Module):
def __init__(
self,
start_text_token=261,
stop_text_token=0,
layers=8,
model_dim=512,
heads=8,
max_text_tokens=120,
max_mel_tokens=250,
max_prompt_tokens=70,
max_conditioning_inputs=1,
code_stride_len=1024,
number_text_tokens=256,
num_audio_tokens=8194,
start_audio_token=8192,
stop_audio_token=8193,
checkpointing=False,
label_smoothing=0.0,
):
"""
Args:
"""
super().__init__()
self.label_smoothing = label_smoothing
self.number_text_tokens = number_text_tokens
self.start_text_token = start_text_token
self.stop_text_token = stop_text_token
self.num_audio_tokens = num_audio_tokens
self.start_audio_token = start_audio_token
self.stop_audio_token = stop_audio_token
self.start_prompt_token = start_audio_token
self.stop_prompt_token = stop_audio_token
self.layers = layers
self.heads = heads
self.model_dim = model_dim
self.max_conditioning_inputs = max_conditioning_inputs
self.max_gen_mel_tokens = max_mel_tokens - self.max_conditioning_inputs - 2
self.max_mel_tokens = (
-1
if max_mel_tokens == -1
else max_mel_tokens + 2 + self.max_conditioning_inputs
)
self.max_text_tokens = -1 if max_text_tokens == -1 else max_text_tokens + 2
self.max_prompt_tokens = max_prompt_tokens
self.code_stride_len = code_stride_len
self.conditioning_dropout = nn.Dropout1d(0.1)
self.text_embedding = nn.Embedding(self.number_text_tokens, model_dim)
self.mel_embedding = nn.Embedding(self.num_audio_tokens, model_dim)
(
self.gpt,
self.mel_pos_embedding,
self.text_pos_embedding,
self.mel_layer_pos_embedding,
self.text_layer_pos_embedding,
) = build_hf_gpt_transformer(
layers,
model_dim,
heads,
self.max_mel_tokens,
self.max_text_tokens,
self.max_prompt_tokens,
checkpointing,
)
self.final_norm = nn.LayerNorm(model_dim)
self.text_head = nn.Linear(model_dim, self.number_text_tokens)
self.mel_head = nn.Linear(model_dim, self.num_audio_tokens)
# reference_embedding
self.reference_embedding = nn.Sequential(
nn.Linear(512, 256),
nn.Tanh(),
nn.Linear(256, self.model_dim),
)
def init_gpt_for_inference(self, kv_cache=True, use_deepspeed=False):
seq_length = (
self.max_prompt_tokens + self.max_mel_tokens + self.max_text_tokens + 1
)
gpt_config = GPT2Config(
vocab_size=self.max_mel_tokens,
n_positions=seq_length,
n_ctx=seq_length,
n_embd=self.model_dim,
n_layer=self.layers,
n_head=self.heads,
gradient_checkpointing=False,
use_cache=True,
)
self.gpt_inference = GPT2InferenceModel(
gpt_config,
self.gpt,
self.mel_pos_embedding,
self.mel_embedding,
self.final_norm,
self.mel_head,
kv_cache=kv_cache,
)
self.gpt.wte = self.mel_embedding
def inference(self, cond_latents, text_inputs, **hf_generate_kwargs):
self.compute_embeddings(cond_latents, text_inputs)
return self.generate(cond_latents, text_inputs, **hf_generate_kwargs)
def compute_embeddings(
self,
cond_latents,
text_inputs,
):
text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token)
text_inputs = F.pad(text_inputs, (1, 0), value=self.start_text_token)
emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs)
emb = torch.cat([cond_latents, emb], dim=1)
self.gpt_inference.store_prefix_emb(emb)
gpt_inputs = torch.full(
(
emb.shape[0],
emb.shape[1] + 1, # +1 for the start_audio_token
),
fill_value=1,
dtype=torch.long,
device=text_inputs.device,
)
gpt_inputs[:, -1] = self.start_audio_token
return gpt_inputs
def generate(
self,
cond_latents,
text_inputs,
**hf_generate_kwargs,
):
gpt_inputs = self.compute_embeddings(cond_latents, text_inputs)
gen = self.gpt_inference.generate(
gpt_inputs,
bos_token_id=self.start_audio_token,
pad_token_id=self.stop_audio_token,
eos_token_id=self.stop_audio_token,
max_length=self.max_gen_mel_tokens + gpt_inputs.shape[-1],
**hf_generate_kwargs,
)
if "return_dict_in_generate" in hf_generate_kwargs:
return gen.sequences[:, gpt_inputs.shape[1] :], gen
return gen[:, gpt_inputs.shape[1] :]