Spaces:
Runtime error
Runtime error
import os | |
import torch | |
import openai | |
import requests | |
import gradio as gr | |
import transformers | |
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor | |
#from peft import PeftModel | |
if torch.cuda.is_available(): | |
device = "cuda" | |
else: | |
device = "cpu" | |
try: | |
if torch.backends.mps.is_available(): | |
device = "mps" | |
except: | |
pass | |
## CoT prompts | |
def _add_markup(table): | |
try: | |
parts = [p.strip() for p in table.splitlines(keepends=False)] | |
if parts[0].startswith('TITLE'): | |
result = f"Title: {parts[0].split(' | ')[1].strip()}\n" | |
rows = parts[1:] | |
else: | |
result = '' | |
rows = parts | |
prefixes = ['Header: '] + [f'Row {i+1}: ' for i in range(len(rows) - 1)] | |
return result + '\n'.join(prefix + row for prefix, row in zip(prefixes, rows)) | |
except: | |
# just use the raw table if parsing fails | |
return table | |
_TABLE = """Year | Democrats | Republicans | Independents | |
2004 | 68.1% | 45.0% | 53.0% | |
2006 | 58.0% | 42.0% | 53.0% | |
2007 | 59.0% | 38.0% | 45.0% | |
2009 | 72.0% | 49.0% | 60.0% | |
2011 | 71.0% | 51.2% | 58.0% | |
2012 | 70.0% | 48.0% | 53.0% | |
2013 | 72.0% | 41.0% | 60.0%""" | |
_INSTRUCTION = 'Read the table below to answer the following questions.' | |
_TEMPLATE = f"""First read an example then the complete question for the second table. | |
------------ | |
{_INSTRUCTION} | |
{_add_markup(_TABLE)} | |
Q: In which year republicans have the lowest favor rate? | |
A: Let's find the column of republicans. Then let's extract the favor rates, they [45.0, 42.0, 38.0, 49.0, 51.2, 48.0, 41.0]. The smallest number is 38.0, that's Row 3. Row 3 is year 2007. The answer is 2007. | |
Q: What is the sum of Democrats' favor rates of 2004, 2012, and 2013? | |
A: Let's find the rows of years 2004, 2012, and 2013. We find Row 1, 6, 7. The favor dates of Demoncrats on that 3 rows are 68.1, 70.0, and 72.0. 68.1+70.0+72=210.1. The answer is 210.1. | |
Q: By how many points do Independents surpass Republicans in the year of 2011? | |
A: Let's find the row with year = 2011. We find Row 5. We extract Independents and Republicans' numbers. They are 58.0 and 51.2. 58.0-51.2=6.8. The answer is 6.8. | |
Q: Which group has the overall worst performance? | |
A: Let's sample a couple of years. In Row 1, year 2004, we find Republicans having the lowest favor rate 45.0 (since 45.0<68.1, 45.0<53.0). In year 2006, Row 2, we find Republicans having the lowest favor rate 42.0 (42.0<58.0, 42.0<53.0). The trend continues to other years. The answer is Republicans. | |
Q: Which party has the second highest favor rates in 2007? | |
A: Let's find the row of year 2007, that's Row 3. Let's extract the numbers on Row 3: [59.0, 38.0, 45.0]. 45.0 is the second highest. 45.0 is the number of Independents. The answer is Independents. | |
{_INSTRUCTION}""" | |
## alpaca-lora | |
# assert ( | |
# "LlamaTokenizer" in transformers._import_structure["models.llama"] | |
# ), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git" | |
# from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig | |
# tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf") | |
# BASE_MODEL = "decapoda-research/llama-7b-hf" | |
# LORA_WEIGHTS = "tloen/alpaca-lora-7b" | |
# if device == "cuda": | |
# model = LlamaForCausalLM.from_pretrained( | |
# BASE_MODEL, | |
# load_in_8bit=False, | |
# torch_dtype=torch.float16, | |
# device_map="auto", | |
# ) | |
# model = PeftModel.from_pretrained( | |
# model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True | |
# ) | |
# elif device == "mps": | |
# model = LlamaForCausalLM.from_pretrained( | |
# BASE_MODEL, | |
# device_map={"": device}, | |
# torch_dtype=torch.float16, | |
# ) | |
# model = PeftModel.from_pretrained( | |
# model, | |
# LORA_WEIGHTS, | |
# device_map={"": device}, | |
# torch_dtype=torch.float16, | |
# ) | |
# else: | |
# model = LlamaForCausalLM.from_pretrained( | |
# BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True | |
# ) | |
# model = PeftModel.from_pretrained( | |
# model, | |
# LORA_WEIGHTS, | |
# device_map={"": device}, | |
# ) | |
# if device != "cpu": | |
# model.half() | |
# model.eval() | |
# if torch.__version__ >= "2": | |
# model = torch.compile(model) | |
## FLAN-UL2 | |
HF_TOKEN = os.environ.get("API_TOKEN", None) | |
API_URL = "https://api-inference.huggingface.co/models/google/flan-ul2" | |
headers = {"Authorization": f"Bearer {HF_TOKEN}"} | |
def query(payload): | |
response = requests.post(API_URL, headers=headers, json=payload) | |
return response.json() | |
## OpenAI models | |
openai.api_key = os.environ.get("OPENAI_TOKEN", None) | |
def set_openai_api_key(api_key): | |
if api_key and api_key.startswith("sk-") and len(api_key) > 50: | |
openai.api_key = api_key | |
def get_response_from_openai(prompt, model="gpt-3.5-turbo", max_output_tokens=256): | |
messages = [{"role": "assistant", "content": prompt}] | |
response = openai.ChatCompletion.create( | |
model=model, | |
messages=messages, | |
temperature=0.7, | |
max_tokens=max_output_tokens, | |
top_p=1, | |
frequency_penalty=0, | |
presence_penalty=0, | |
) | |
ret = response.choices[0].message['content'] | |
return ret | |
## deplot models | |
model_deplot = Pix2StructForConditionalGeneration.from_pretrained("google/deplot", torch_dtype=torch.bfloat16) | |
if device == "cuda": | |
model_deplot = model_deplot.to(0) | |
processor_deplot = Pix2StructProcessor.from_pretrained("google/deplot") | |
def evaluate( | |
table, | |
question, | |
llm="alpaca-lora", | |
input=None, | |
temperature=0.1, | |
top_p=0.75, | |
top_k=40, | |
num_beams=4, | |
max_new_tokens=128, | |
**kwargs, | |
): | |
prompt_0shot = _INSTRUCTION + "\n" + _add_markup(table) + "\n" + "Q: " + question + "\n" + "A:" | |
prompt = _TEMPLATE + "\n" + _add_markup(table) + "\n" + "Q: " + question + "\n" + "A:" | |
if llm == "alpaca-lora": | |
inputs = tokenizer(prompt, return_tensors="pt") | |
input_ids = inputs["input_ids"].to(device) | |
generation_config = GenerationConfig( | |
temperature=temperature, | |
top_p=top_p, | |
top_k=top_k, | |
num_beams=num_beams, | |
**kwargs, | |
) | |
with torch.no_grad(): | |
generation_output = model.generate( | |
input_ids=input_ids, | |
generation_config=generation_config, | |
return_dict_in_generate=True, | |
output_scores=True, | |
max_new_tokens=max_new_tokens, | |
) | |
s = generation_output.sequences[0] | |
output = tokenizer.decode(s) | |
elif llm == "flan-ul2": | |
try: | |
output = query({"inputs": prompt_0shot})[0]["generated_text"] | |
except: | |
output = "<flan-ul2 inference API error - try later>" | |
elif llm == "gpt-3.5-turbo": | |
try: | |
output = get_response_from_openai(prompt_0shot) | |
except: | |
output = "<Remember to input your OpenAI API key ☺>" | |
else: | |
RuntimeError(f"No such LLM: {llm}") | |
return output | |
def process_document(image, question, llm): | |
# image = Image.open(image) | |
inputs = processor_deplot(images=image, text="Generate the underlying data table for the figure below:", return_tensors="pt").to(torch.bfloat16) | |
if device == "cuda": | |
inputs = inputs.to(0) | |
predictions = model_deplot.generate(**inputs, max_new_tokens=512) | |
table = processor_deplot.decode(predictions[0], skip_special_tokens=True).replace("<0x0A>", "\n") | |
# send prompt+table to LLM | |
res = evaluate(table, question, llm=llm) | |
if llm == "alpaca-lora": | |
return [table, res.split("A:")[-1]] | |
else: | |
return [table, res] | |
# theme = gr.themes.Monochrome( | |
# primary_hue="indigo", | |
# secondary_hue="blue", | |
# neutral_hue="slate", | |
# radius_size=gr.themes.sizes.radius_sm, | |
# font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"], | |
# ) | |
with gr.Blocks(theme="gradio/soft") as demo: | |
with gr.Column(): | |
# gr.Markdown( | |
# """<h1><center>DePlot+LLM: Multimodal chain-of-thought reasoning on plots</center></h1> | |
# <p> | |
# This is a demo of DePlot+LLM for QA and summarisation. <a href='https://arxiv.org/abs/2212.10505' target='_blank'>DePlot</a> is an image-to-text model that converts plots and charts into a textual sequence. The sequence then is used to prompt LLM for chain-of-thought reasoning. The current underlying LLMs are <a href='https://huggingface.co/spaces/tloen/alpaca-lora' target='_blank'>alpaca-lora</a>, <a href='https://huggingface.co/google/flan-ul2' target='_blank'>flan-ul2</a>, and <a href='https://openai.com/blog/chatgpt' target='_blank'>gpt-3.5-turbo</a>. To use it, simply upload your image and type a question or instruction and click 'submit', or click one of the examples to load them. Read more at the links below. | |
# </p> | |
# """ | |
# ) | |
gr.Markdown( | |
"""<h1><center>DePlot+LLM: Multimodal chain-of-thought reasoning on plots</center></h1> | |
<p> | |
This is a demo of DePlot+LLM for QA and summarisation. <a href='https://arxiv.org/abs/2212.10505' target='_blank'>DePlot</a> is an image-to-text model that converts plots and charts into a textual sequence. The sequence then is used to prompt LLM for chain-of-thought reasoning. The current underlying LLMs are <a href='https://huggingface.co/google/flan-ul2' target='_blank'>flan-ul2</a> and <a href='https://openai.com/blog/chatgpt' target='_blank'>gpt-3.5-turbo</a>. To use it, simply upload your image and type a question or instruction and click 'submit', or click one of the examples to load them. Read more at the links below. | |
</p> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
input_image = gr.Image(label="Input Image", type="pil", interactive=True) | |
#input_image.style(height=512, width=512) | |
instruction = gr.Textbox(placeholder="Enter your instruction/question...", label="Question/Instruction") | |
#llm = gr.Dropdown(["alpaca-lora", "flan-ul2", "gpt-3.5-turbo"], label="LLM") | |
llm = gr.Dropdown(["flan-ul2", "gpt-3.5-turbo"], label="LLM") | |
openai_api_key_textbox = gr.Textbox(value='', | |
placeholder="Paste your OpenAI API key (sk-...) and hit Enter (if using OpenAI models, otherwise leave empty)", | |
show_label=False, lines=1, type='password') | |
submit = gr.Button("Submit", variant="primary") | |
with gr.Column(scale=2): | |
with gr.Accordion("Show intermediate table", open=False): | |
output_table = gr.Textbox(lines=8, label="Intermediate Table") | |
output_text = gr.Textbox(lines=8, label="Output") | |
gr.Examples( | |
examples=[ | |
["deplot_case_study_6.png", "Rank the four methods according to average model performances. By how much does deplot outperform the second strongest approach on average across the two sets? Show the computation.", "gpt-3.5-turbo"], | |
["deplot_case_study_4.png", "What are the acceptance rates? And how does the acceptance change over the years?", "gpt-3.5-turbo"], | |
["deplot_case_study_m1.png", "Summarise the chart for me please.", "gpt-3.5-turbo"], | |
#["deplot_case_study_m1.png", "What is the sum of numbers of Indonesia and Ireland? Remember to think step by step.", "alpaca-lora"], | |
#["deplot_case_study_3.png", "By how much did China's growth rate drop? Think step by step.", "alpaca-lora"], | |
#["deplot_case_study_4.png", "How many papers are submitted in 2020?", "flan-ul2"], | |
["deplot_case_study_5.png", "Which sales channel has the second highest portion?", "flan-ul2"], | |
#["deplot_case_study_x2.png", "Summarise the chart for me please.", "alpaca-lora"], | |
#["deplot_case_study_4.png", "How many papers are submitted in 2020?", "alpaca-lora"], | |
#["deplot_case_study_m1.png", "Summarise the chart for me please.", "alpaca-lora"], | |
#["deplot_case_study_4.png", "acceptance rate = # accepted / #submitted . What is the acceptance rate of 2010?", "flan-ul2"], | |
#["deplot_case_study_m1.png", "Summarise the chart for me please.", "flan-ul2"], | |
], | |
cache_examples=True, | |
inputs=[input_image, instruction, llm], | |
outputs=[output_table, output_text], | |
fn=process_document | |
) | |
gr.Markdown( | |
"""<p style='text-align: center'><a href='https://arxiv.org/abs/2212.10505' target='_blank'>DePlot: One-shot visual language reasoning by plot-to-table translation</a></p>""" | |
) | |
openai.api_key = "" | |
openai_api_key_textbox.change(set_openai_api_key, | |
inputs=[openai_api_key_textbox], | |
outputs=[]) | |
openai_api_key_textbox.submit(set_openai_api_key, | |
inputs=[openai_api_key_textbox], | |
outputs=[]) | |
submit.click(process_document, inputs=[input_image, instruction, llm], outputs=[output_table, output_text]) | |
instruction.submit( | |
process_document, inputs=[input_image, instruction, llm], outputs=[output_table, output_text] | |
) | |
demo.queue(concurrency_count=1).launch() |