image-captioning / model.py
ydshieh
try init model
943681e
raw
history blame
2 kB
import os, sys, shutil
import numpy as np
from PIL import Image
import jax
from transformers import ViTFeatureExtractor
from transformers import GPT2Tokenizer
from huggingface_hub import hf_hub_download
current_path = os.path.dirname(os.path.abspath(__file__))
sys.path.append(current_path)
# Main model - ViTGPT2LM
from vit_gpt2.modeling_flax_vit_gpt2_lm import FlaxViTGPT2LMForConditionalGeneration
# create target model directory
model_dir = './models/'
os.makedirs(model_dir, exist_ok=True)
# copy config file
filepath = hf_hub_download("flax-community/vit-gpt2", "checkpoints/ckpt_5/config.json")
shutil.copyfile(filepath, os.path.join(model_dir, 'config.json'))
# copy model file
filepath = hf_hub_download("flax-community/vit-gpt2", "checkpoints/ckpt_5/flax_model.msgpack")
shutil.copyfile(filepath, os.path.join(model_dir, 'flax_model.msgpack'))
flax_vit_gpt2_lm = FlaxViTGPT2LMForConditionalGeneration.from_pretrained(model_dir)
vit_model_name = 'google/vit-base-patch16-224-in21k'
feature_extractor = ViTFeatureExtractor.from_pretrained(vit_model_name)
gpt2_model_name = 'asi/gpt-fr-cased-small'
tokenizer = GPT2Tokenizer.from_pretrained(gpt2_model_name)
max_length = 32
num_beams = 8
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
@jax.jit
def predict_fn(pixel_values):
return flax_vit_gpt2_lm.generate(pixel_values, **gen_kwargs)
def predict(image):
# batch dim is added automatically
encoder_inputs = feature_extractor(images=image, return_tensors="jax")
pixel_values = encoder_inputs.pixel_values
# generation
generation = predict_fn(pixel_values)
token_ids = np.array(generation.sequences)[0]
caption = tokenizer.decode(token_ids)
return caption, token_ids
def init():
image_path = 'samples/val_000000039769.jpg'
image = Image.open(image_path)
caption, token_ids = predict(image)
image.close()
def predict_dummy(image):
return 'dummy caption!', ['dummy', 'caption', '!'], [1, 2, 3]
init()