|
import gradio as gr |
|
import torch |
|
from sahi.classification import ImageClassification |
|
from sahi.utils.cv import visualize_object_predictions, read_image |
|
from ultralyticsplus import YOLO |
|
|
|
def yolov8_inference( |
|
image: gr.Image = None, |
|
model_path: gr.Dropdown = None, |
|
image_size: gr.Slider = 640, |
|
conf_threshold: gr.Slider = 0.25, |
|
iou_threshold: gr.Slider = 0.45, |
|
): |
|
""" |
|
YOLOv8 inference function |
|
Args: |
|
image: Input image |
|
model_path: Path to the model |
|
image_size: Image size |
|
conf_threshold: Confidence threshold |
|
iou_threshold: IOU threshold |
|
|
|
""" |
|
model = YOLO(model_path) |
|
model.overrides['conf'] = conf_threshold |
|
model.overrides['iou']= iou_threshold |
|
model.overrides['agnostic_nms'] = False |
|
model.overrides['max_det'] = 1000 |
|
|
|
|
|
top_class_index = torch.argmax(results[0].probs).item() |
|
Class = model.names[top_class_index] |
|
print(Class) |
|
|
|
|
|
inputs = [ |
|
gr.Image(type="filepath", label="Input Image"), |
|
gr.Dropdown(["foduucom/Tyre-Quality-Classification-AI"], |
|
default="foduucom/Tyre-Quality-Classification-AI", label="Model"), |
|
gr.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"), |
|
gr.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"), |
|
gr.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"), |
|
] |
|
|
|
outputs = gr.Image(type="filepath", label="Output Image") |
|
title = "AI-Powered Tire Quality Inspection: YOLOv8s Enhanced Classification" |
|
|
|
|
|
|
|
|
|
Space Description:""" |
|
Welcome to our π€ AI-Powered Tire Quality Inspection Space β a cutting-edge solution harnessing the capabilities of YOLOv8s to revolutionize π tire quality control processes. |
|
""" |
|
About This Space: """ |
|
This interactive platform empowers you to classify tires with unparalleled precision, utilizing a fine-tuned YOLOv8s model π― specifically developed for identifying defects in tire manufacturing. By submitting an image of a tire, you can instantly determine whether it meets the rigorous quality standards required in the industry, helping to ensure safety and reliability in automotive products. |
|
""" |
|
examples = [['samples/1.jpeg', 'foduucom/thermal-image-object-detection', 640, 0.25, 0.45], ['samples/2.jpg', 'foduucom/thermal-image-object-detection', 640, 0.25, 0.45]] |
|
demo_app = gr.Interface( |
|
fn=yolov8_inference, |
|
inputs=inputs, |
|
outputs=outputs, |
|
title=title, |
|
description=description, |
|
examples=examples, |
|
cache_examples=True, |
|
theme='huggingface', |
|
) |
|
demo_app.queue().launch(debug=True) |