nehulagrawal
commited on
Commit
Β·
e09ba31
1
Parent(s):
234dbc3
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from sahi.classification import ImageClassification
|
4 |
+
from sahi.utils.cv import visualize_object_predictions, read_image
|
5 |
+
from ultralyticsplus import YOLO
|
6 |
+
|
7 |
+
def yolov8_inference(
|
8 |
+
image: gr.Image = None,
|
9 |
+
model_path: gr.Dropdown = None,
|
10 |
+
image_size: gr.Slider = 640,
|
11 |
+
conf_threshold: gr.Slider = 0.25,
|
12 |
+
iou_threshold: gr.Slider = 0.45,
|
13 |
+
):
|
14 |
+
"""
|
15 |
+
YOLOv8 inference function
|
16 |
+
Args:
|
17 |
+
image: Input image
|
18 |
+
model_path: Path to the model
|
19 |
+
image_size: Image size
|
20 |
+
conf_threshold: Confidence threshold
|
21 |
+
iou_threshold: IOU threshold
|
22 |
+
|
23 |
+
"""
|
24 |
+
model = YOLO(model_path)
|
25 |
+
model.overrides['conf'] = conf_threshold
|
26 |
+
model.overrides['iou']= iou_threshold
|
27 |
+
model.overrides['agnostic_nms'] = False # NMS class-agnostic
|
28 |
+
model.overrides['max_det'] = 1000
|
29 |
+
|
30 |
+
# observe results
|
31 |
+
top_class_index = torch.argmax(results[0].probs).item()
|
32 |
+
Class = model.names[top_class_index]
|
33 |
+
print(Class)
|
34 |
+
|
35 |
+
|
36 |
+
inputs = [
|
37 |
+
gr.Image(type="filepath", label="Input Image"),
|
38 |
+
gr.Dropdown(["foduucom/Tyre-Quality-Classification-AI"],
|
39 |
+
default="foduucom/Tyre-Quality-Classification-AI", label="Model"),
|
40 |
+
gr.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
|
41 |
+
gr.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
|
42 |
+
gr.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
|
43 |
+
]
|
44 |
+
|
45 |
+
outputs = gr.Image(type="filepath", label="Output Image")
|
46 |
+
title = "AI-Powered Tire Quality Inspection: YOLOv8s Enhanced Classification"
|
47 |
+
|
48 |
+
description ="""
|
49 |
+
π₯ Unveiling ThermalFoduu: Spot Objects with Thermal Vision! ππΈ Lost your keys in the dark? ποΈπ ThermalFoduu's got you covered! Powered by Foduu AI, our app effortlessly detects objects in thermal images. No more blurry blobs β just pinpoint accuracy! π¦
π―
|
50 |
+
Love the thermal world? Give us a thumbs up! π Questions or suggestions? Contact us at info@foduu. Let's decode the thermal universe together! π§π‘οΈ
|
51 |
+
"""
|
52 |
+
|
53 |
+
|
54 |
+
π Space Description:"""
|
55 |
+
Welcome to our π€ AI-Powered Tire Quality Inspection Space β a cutting-edge solution harnessing the capabilities of YOLOv8s to revolutionize π tire quality control processes.
|
56 |
+
"""
|
57 |
+
π About This Space: """
|
58 |
+
This interactive platform empowers you to classify tires with unparalleled precision, utilizing a fine-tuned YOLOv8s model π― specifically developed for identifying defects in tire manufacturing. By submitting an image of a tire, you can instantly determine whether it meets the rigorous quality standards required in the industry, helping to ensure safety and reliability in automotive products.
|
59 |
+
"""
|
60 |
+
examples = [['samples/1.jpeg', 'foduucom/thermal-image-object-detection', 640, 0.25, 0.45], ['samples/2.jpg', 'foduucom/thermal-image-object-detection', 640, 0.25, 0.45]]
|
61 |
+
demo_app = gr.Interface(
|
62 |
+
fn=yolov8_inference,
|
63 |
+
inputs=inputs,
|
64 |
+
outputs=outputs,
|
65 |
+
title=title,
|
66 |
+
description=description,
|
67 |
+
examples=examples,
|
68 |
+
cache_examples=True,
|
69 |
+
theme='huggingface',
|
70 |
+
)
|
71 |
+
demo_app.queue().launch(debug=True)
|