|
import gradio as gr |
|
import torch |
|
from ultralyticsplus import YOLO, render_result |
|
|
|
|
|
|
|
torch.hub.download_url_to_file('https://external-content.duckduckgo.com/iu/?u=https%3A%2F%2Ftexashafts.com%2Fwp-content%2Fuploads%2F2016%2F04%2Fconstruction-worker.jpg', 'one.jpg') |
|
torch.hub.download_url_to_file( |
|
'https://www.pearsonkoutcherlaw.com/wp-content/uploads/2020/06/Construction-Workers.jpg', 'two.jpg') |
|
torch.hub.download_url_to_file( |
|
'https://nssgroup.com/wp-content/uploads/2019/02/Building-maintenance-blog.jpg', 'three.jpg') |
|
|
|
|
|
def yoloV8_func(image: gr.inputs.Image = None, |
|
image_size: gr.inputs.Slider = 640, |
|
conf_threshold: gr.inputs.Slider = 0.4, |
|
iou_threshold: gr.inputs.Slider = 0.50): |
|
"""_summary_ |
|
Args: |
|
image (gr.inputs.Image, optional): _description_. Defaults to None. |
|
image_size (gr.inputs.Slider, optional): _description_. Defaults to 640. |
|
conf_threshold (gr.inputs.Slider, optional): _description_. Defaults to 0.4. |
|
iou_threshold (gr.inputs.Slider, optional): _description_. Defaults to 0.50. |
|
""" |
|
model_path = "best.pt" |
|
model = YOLO("foduucom/table-detection-and-extraction") |
|
|
|
results = model.predict(image, |
|
conf=conf_threshold, |
|
iou=iou_threshold, |
|
imgsz=image_size) |
|
|
|
|
|
box = results[0].boxes |
|
print("Object type:", box.cls) |
|
print("Coordinates:", box.xyxy) |
|
print("Probability:", box.conf) |
|
render = render_result(model=model, image=image, result=results[0]) |
|
return render |
|
|
|
|
|
inputs = [ |
|
gr.inputs.Image(type="filepath", label="Input Image"), |
|
gr.inputs.Slider(minimum=320, maximum=1280, default=640, |
|
step=32, label="Image Size"), |
|
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, |
|
step=0.05, label="Confidence Threshold"), |
|
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, |
|
step=0.05, label="IOU Threshold"), |
|
] |
|
|
|
|
|
outputs = gr.outputs.Image(type="filepath", label="Output Image") |
|
title = "YOLOv8 101: Custome Object Detection on Construction Workers " |
|
|
|
|
|
examples = [['one.jpg', 640, 0.5, 0.7], |
|
['two.jpg', 800, 0.5, 0.6], |
|
['three.jpg', 900, 0.5, 0.8]] |
|
|
|
yolo_app = gr.Interface( |
|
fn=yoloV8_func, |
|
inputs=inputs, |
|
outputs=outputs, |
|
title=title, |
|
examples=examples, |
|
cache_examples=True, |
|
|
|
) |
|
yolo_app.launch(debug=True, enable_queue=True) |