nehulagrawal commited on
Commit
d89f518
·
1 Parent(s): c313ec6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -29
app.py CHANGED
@@ -2,7 +2,7 @@ import gradio as gr
2
  import torch
3
  from sahi.prediction import ObjectPrediction
4
  from sahi.utils.cv import visualize_object_predictions, read_image
5
- from ultralyticsplus import YOLO
6
 
7
  # Images
8
  torch.hub.download_url_to_file('https://huggingface.co/spaces/foduucom/table-extraction-yolov8/resolve/main/test/table1.jpg', 'document1.jpg')
@@ -28,35 +28,14 @@ def yolov8_inference(
28
  Rendered image
29
  """
30
  model = YOLO(model_path)
31
- model.conf = conf_threshold
32
- model.iou = iou_threshold
33
- results = model.predict(image, imgsz=image_size)
34
- object_prediction_list = []
35
- for _, image_results in enumerate(results):
36
- if len(image_results)!=0:
37
- image_predictions_in_xyxy_format = image_results['det']
38
- for pred in image_predictions_in_xyxy_format:
39
- x1, y1, x2, y2 = (
40
- int(pred[0]),
41
- int(pred[1]),
42
- int(pred[2]),
43
- int(pred[3]),
44
- )
45
- bbox = [x1, y1, x2, y2]
46
- score = pred[4]
47
- category_name = model.model.names[int(pred[5])]
48
- category_id = pred[5]
49
- object_prediction = ObjectPrediction(
50
- bbox=bbox,
51
- category_id=int(category_id),
52
- score=score,
53
- category_name=category_name,
54
- )
55
- object_prediction_list.append(object_prediction)
56
-
57
  image = read_image(image)
58
- output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list)
59
- return output_image['image']
 
60
 
61
 
62
  inputs = [
 
2
  import torch
3
  from sahi.prediction import ObjectPrediction
4
  from sahi.utils.cv import visualize_object_predictions, read_image
5
+ from ultralyticsplus import YOLO, render_result
6
 
7
  # Images
8
  torch.hub.download_url_to_file('https://huggingface.co/spaces/foduucom/table-extraction-yolov8/resolve/main/test/table1.jpg', 'document1.jpg')
 
28
  Rendered image
29
  """
30
  model = YOLO(model_path)
31
+ model.overrides['conf'] = conf_threshold
32
+ model.overrides['iou']= iou_threshold
33
+ model.overrides['agnostic_nms'] = False # NMS class-agnostic
34
+ model.overrides['max_det'] = 1000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  image = read_image(image)
36
+ render = render_result(model=model, image=image, result=results[0])
37
+
38
+ return render
39
 
40
 
41
  inputs = [