File size: 27,309 Bytes
d3eafc5
 
 
 
 
 
7bb3c7f
d3eafc5
35c791d
36df1f4
 
35c791d
36df1f4
 
 
35c791d
 
36df1f4
35c791d
 
36df1f4
 
 
 
b37652d
 
 
 
 
 
36df1f4
 
b37652d
549ff6f
 
d4d57fe
fd0fea4
01cda80
34b7ca8
e2f1f18
36df1f4
34b7ca8
b37652d
35c791d
d3eafc5
 
 
 
 
9ab34b6
6fee3f0
9d03fc2
a9ca915
d3eafc5
a9ca915
 
48b7631
93bfba2
8c1f8b1
36df1f4
 
8c1f8b1
a9ca915
 
 
 
 
49dfb30
ff657e5
a9ca915
 
 
d3eafc5
 
4cf56ac
d3eafc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9ca915
ff657e5
384f7cc
ff657e5
384f7cc
 
ff657e5
ff684f3
925e298
4cf56ac
93bfba2
 
ea90117
4cf56ac
 
 
 
 
 
 
 
02148aa
4cf56ac
02148aa
4cf56ac
c47663a
 
4cf56ac
 
 
 
 
 
 
 
 
c47663a
 
4cf56ac
 
02148aa
e208bb7
4cf56ac
 
 
 
 
aa0c4ec
4cf56ac
9d03fc2
04ce0c3
 
e8560c1
8d8e3e4
5858e45
d3eafc5
18e0122
a9ca915
d3eafc5
8d8e3e4
5f668d1
5858e45
a9ca915
3c1f632
5f668d1
5858e45
bdb5517
 
 
 
 
8d8e3e4
c738df4
 
a9ca915
 
 
8c67aee
3f0ac47
8c67aee
 
 
 
 
 
3f0ac47
d604eb8
36df1f4
bdac6d3
bdb5517
bdac6d3
9c395ab
 
8871dfa
36df1f4
7750195
b37652d
8a1b642
8c67aee
d3eafc5
757fa77
36df1f4
 
7df282f
36df1f4
8e8b8e3
94a95e7
7df282f
94a95e7
36df1f4
94a95e7
 
 
 
 
7df282f
 
757fa77
5858e45
 
 
 
36df1f4
d3eafc5
a9ca915
 
 
 
 
 
 
 
 
 
 
 
 
 
925e298
3b480cb
4f439d4
bb1d03c
4f439d4
bb1d03c
 
 
 
 
fc02b93
a2f5e03
 
bb1d03c
48b7631
 
7354f4e
93bfba2
 
384f7cc
 
 
 
 
 
 
 
 
 
93bfba2
7354f4e
 
 
e208bb7
7354f4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
395f049
7354f4e
 
 
e208bb7
7354f4e
 
 
 
00651e4
7354f4e
 
 
 
 
 
 
 
 
 
 
 
 
 
48b7631
 
 
 
 
 
 
 
 
 
 
 
257b075
7354f4e
48b7631
 
8bf85b3
48b7631
a9ca915
 
d3eafc5
 
 
a9ca915
d3eafc5
 
fd283e5
a9ca915
d3eafc5
a9ca915
d3eafc5
a91770e
e208bb7
1b4088e
36823d3
a9ca915
 
1b4088e
 
 
 
e208bb7
1b4088e
28f4657
1b4088e
 
 
a9ca915
fc02b93
173c68f
7354f4e
 
48b7631
36823d3
4e53fe0
 
4f439d4
36823d3
7354f4e
93bfba2
 
 
 
 
 
 
6cf9565
 
5b4ec73
1b4088e
a9ca915
 
 
 
 
 
 
 
 
9d03fc2
a9ca915
 
 
a91770e
e208bb7
a9ca915
36823d3
a9ca915
 
 
 
 
 
e208bb7
a9ca915
28f4657
a9ca915
 
 
1b4088e
fc02b93
3b480cb
36823d3
4e53fe0
 
4f439d4
36823d3
a9ca915
6cf9565
 
5b4ec73
36823d3
a9ca915
 
 
 
 
 
 
 
 
9d03fc2
a9ca915
 
 
a91770e
e208bb7
a9ca915
36823d3
a9ca915
 
 
 
 
 
e208bb7
a9ca915
28f4657
a9ca915
 
 
 
fc02b93
3b480cb
36823d3
4e53fe0
 
4f439d4
36823d3
a9ca915
6cf9565
 
5b4ec73
1b4088e
d3eafc5
 
 
 
 
 
 
 
 
 
 
 
 
 
a9ca915
 
 
 
 
 
 
 
 
 
 
 
 
d3eafc5
a9ca915
d3eafc5
 
 
 
 
 
 
 
 
a9ca915
 
 
d3eafc5
 
 
9d03fc2
d3eafc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9ca915
d3eafc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9ca915
d3eafc5
18e0122
d3eafc5
 
 
 
a224f2b
d3eafc5
18e0122
d3eafc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9ca915
 
 
 
 
 
 
 
 
 
 
 
 
 
5b4ec73
a9ca915
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b4ec73
a9ca915
 
 
 
 
d3eafc5
a9ca915
 
d3eafc5
 
 
 
 
 
 
 
 
 
5b4ec73
d3eafc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f3c82e
 
d3eafc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
#!/usr/bin/env python
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
import spaces
import os

#import subprocess
#subprocess.run(['sh', './conda.sh'])

#import sys
#conda_prefix = os.path.expanduser("~/miniconda3") 
#conda_bin = os.path.join(conda_prefix, "bin")

# Add Conda's bin directory to your PATH
#os.environ["PATH"] = conda_bin + os.pathsep + os.environ["PATH"]

# Activate the base environment (adjust if needed)
#os.system(f'{conda_bin}/conda init  --all') 
#os.system(f'{conda_bin}/conda activate base') 


#os.system(f'{conda_bin}/conda install nvidia/label/cudnn-9.3.0::cudnn')
#os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-libraries')
#os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-libraries-dev')
#os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-cudart')
#os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-cudart-dev')
#os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-nvcc')

#os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-toolkit')

#subprocess.run(['pip', 'install', 'git+https://github.com/hidet-org/hidet.git'])
#subprocess.run(['pip', 'install', 'git+https://github.com/ford442/hidet.git@thread'])

#os.system(f'{conda_bin}/conda install pytorch::pytorch-cuda')
#os.system(f'{conda_bin}/conda install rcdr_py37::tensorrt')
#subprocess.run(['sh', './hidet.sh'])
#subprocess.run(['sh', './modelopt.sh'])
#import hidet
#print(dir(hidet)) 
#import torch_tensorrt

import random
import uuid
import gradio as gr
import numpy as np
from PIL import Image

import diffusers
from diffusers import AutoencoderKL, StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
from typing import Tuple
import paramiko
import datetime
import cyper
from image_gen_aux import UpscaleWithModel
import torch
#import torch._dynamo
#torch._dynamo.list_backends()

torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
# torch.backends.cuda.preferred_blas_library="cublas"
# torch.backends.cuda.preferred_linalg_library="cusolver"
torch.set_float32_matmul_precision("highest")


DESCRIPTIONXX = """
    ## ⚡⚡⚡⚡ REALVISXL V5.0 BF16 (Tester C) ⚡⚡⚡⚡
"""

examples = [
    "Many apples splashed with drops of water within a fancy bowl 4k, hdr  --v 6.0 --style raw",
    "A profile photo of a dog, brown background, shot on Leica M6 --ar 128:85 --v 6.0 --style raw",
]

MODEL_OPTIONS = {
    "REALVISXL V5.0 BF16": "ford442/RealVisXL_V5.0_BF16",
}

MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))

style_list = [
    {
        "name": "3840 x 2160",
        "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "2560 x 1440",
        "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "HD+",
        "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "Style Zero",
        "prompt": "{prompt}",
        "negative_prompt": "",
    },
]

styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
DEFAULT_STYLE_NAME = "Style Zero"
STYLE_NAMES = list(styles.keys())
HF_TOKEN = os.getenv("HF_TOKEN")
FTP_HOST = os.getenv("FTP_HOST")
FTP_USER = os.getenv("FTP_USER")
FTP_PASS = os.getenv("FTP_PASS")
FTP_DIR = os.getenv("FTP_DIR")

# os.putenv('TORCH_LINALG_PREFER_CUSOLVER','1')
os.putenv('HF_HUB_ENABLE_HF_TRANSFER','1')
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

upscaler = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))

def scheduler_swap_callback(pipeline, step_index, timestep, callback_kwargs):
        # adjust the batch_size of prompt_embeds according to guidance_scale
    if step_index == int(pipeline.num_timesteps * 0.1):
        print("-- swapping scheduler --")
      #  pipeline.scheduler = euler_scheduler
        torch.set_float32_matmul_precision("high")
       # pipe.vae = vae_b
        torch.backends.cudnn.allow_tf32 = True
        torch.backends.cuda.matmul.allow_tf32 = True
        torch.backends.cudnn.deterministic = True
        torch.backends.cuda.preferred_blas_library="cublaslt"
    #if step_index == int(pipeline.num_timesteps * 0.5):
       # torch.set_float32_matmul_precision("medium")
        #callback_kwargs["latents"] = callback_kwargs["latents"].to(torch.float64)
        #pipe.unet.to(torch.float64)
      #  pipe.guidance_scale=1.0
       # pipe.scheduler.set_timesteps(num_inference_steps*.70)
      #  print(f"-- setting step {pipeline.num_timesteps * 0.1} --")
      #  pipeline.scheduler._step_index = pipeline.num_timesteps * 0.1 
    if step_index == int(pipeline.num_timesteps * 0.9):
        torch.backends.cuda.preferred_blas_library="cublas"
        torch.backends.cudnn.allow_tf32 = False
        torch.backends.cuda.matmul.allow_tf32 = False
        torch.set_float32_matmul_precision("highest")
        #callback_kwargs["latents"] = callback_kwargs["latents"].to(torch.bfloat16)
        #pipe.unet.to(torch.float64)
     #   pipe.vae = vae_a
     #   pipe.unet = unet_a
        torch.backends.cudnn.deterministic = False
        #pipe.unet.set_default_attn_processor()
        print("-- swapping scheduler --")
      #  pipeline.scheduler = heun_scheduler
        #pipe.scheduler.set_timesteps(num_inference_steps*.70)
      #  print(f"-- setting step {pipeline.num_timesteps * 0.9} --")
      #  pipeline.scheduler._step_index = pipeline.num_timesteps * 0.9
    return {"latents": callback_kwargs["latents"]}   

def load_and_prepare_model():
    sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1 ,use_karras_sigmas=True)
    vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False) #.to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
    #vaeRV = AutoencoderKL.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='vae', safety_checker=None, use_safetensors=False).to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
    #sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
    #sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler')
    pipe = StableDiffusionXLPipeline.from_pretrained(
        'ford442/RealVisXL_V5.0_BF16',
        #torch_dtype=torch.bfloat16,
        add_watermarker=False,
      #  low_cpu_mem_usage = False,
        token = HF_TOKEN,
      #  scheduler = sched,
    )
    #sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1) #,use_karras_sigmas=True)
    pipe.vae = vaeXL #.to(torch.bfloat16)
    pipe.scheduler = sched
    
    pipe.vae.do_resize = False
    #pipe.vae.vae_scale_factor = 8
    pipe.vae.do_convert_rgb = True
    
    pipe.vae.set_default_attn_processor()
    #pipe.to(device)
    #pipe.to(torch.bfloat16)
    print(f'init noise scale: {pipe.scheduler.init_noise_sigma}')
    pipe.watermark=None
    pipe.safety_checker=None  
    
    '''       # Freeze vae and unet
    pipe.vae.requires_grad_(False)
    pipe.unet.requires_grad_(False)
    pipe.text_encoder.requires_grad_(False)
    pipe.unet.eval()
    pipe.vae.eval()
    pipe.text_encoder.eval()
    '''

    #pipe.unet = pipe.unet.to(memory_format=torch.contiguous_format)
    
    #pipe.unet.to(memory_format=torch.channels_last)
    #pipe.enable_vae_tiling()
    #pipe.unet = torch.compile(pipe.unet, backend="hidet", dynamic=False, mode='max-autotune') #.to(device=device, dtype=torch.bfloat16)
    #pipe.unet = torch.compile(pipe.unet, backend="hidet", dynamic=False, mode='max-autotune-no-cudagraphs') #.to(device=device, dtype=torch.bfloat16)
    #pipe.unet = torch.compile(pipe.unet, backend="hidet", dynamic=False, options={'epilogue_fusion': True, 'shape_padding': True}) #.to(device=device, dtype=torch.bfloat16)
    #pipe.unet = torch.compile(pipe.unet, dynamic=False)
    #pipe.unet = torch.compile(pipe.unet, backend="hidet", dynamic=False, options={"search_space": 0})
    #pipe.unet = torch.compile(pipe.unet, backend="torch_tensorrt", dynamic=False, options={"precision": torch.bfloat16,"optimization_level": 4,})
    pipe.to(device=device, dtype=torch.bfloat16)

    return pipe

#hidet.option.parallel_build(False)
#hidet.option.parallel_tune(2,2.0)
#torch._dynamo.config.suppress_errors = True
#torch._dynamo.disallow_in_graph(diffusers.models.attention.BasicTransformerBlock)

# more search
#hidet.torch.dynamo_config.search_space(0)
#hidet.torch.dynamo_config.dump_graph_ir("./local_graph")
#  hidet.option.cache_dir("local_cache")
# automatically transform the model to use float16 data type
#hidet.torch.dynamo_config.use_fp16(True)
# use float16 data type as the accumulate data type in operators with reduction
#hidet.torch.dynamo_config.use_fp16_reduction(True)
# use tensorcore
#hidet.torch.dynamo_config.use_tensor_core()
#hidet.torch.dynamo_config.steal_weights(False)

# Preload and compile both models

pipe = load_and_prepare_model()

MAX_SEED = np.iinfo(np.int64).max

neg_prompt_2 = " 'non-photorealistic':1.5, 'unrealistic skin','unattractive face':1.3, 'low quality':1.1, ('dull color scheme', 'dull colors', 'digital noise':1.2),'amateurish', 'poorly drawn face':1.3, 'poorly drawn', 'distorted face', 'low resolution', 'simplistic' "

def upload_to_ftp(filename):
    try:
        transport = paramiko.Transport((FTP_HOST, 22))
        destination_path=FTP_DIR+filename
        transport.connect(username = FTP_USER, password = FTP_PASS)
        sftp = paramiko.SFTPClient.from_transport(transport)
        sftp.put(filename, destination_path)
        sftp.close()
        transport.close()
        print(f"Uploaded {filename} to FTP server")
    except Exception as e:
        print(f"FTP upload error: {e}")

def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
    filename= f'rv_C_{timestamp}.txt'
    with open(filename, "w") as f:
        f.write(f"Realvis 5.0 (Tester C) \n")
        f.write(f"Date/time: {timestamp} \n")
        f.write(f"Prompt: {prompt} \n")
        f.write(f"Steps: {num_inference_steps} \n")
        f.write(f"Guidance Scale: {guidance_scale} \n")
        f.write(f"SPACE SETUP: \n")
        f.write(f"Model Scheduler: Euler_a all_custom before cuda \n")
        f.write(f"Model VAE: sdxl-vae-bf16\n")
        f.write(f"To cuda and bfloat \n")
    upload_to_ftp(filename) 

code = r'''

import torch
import paramiko
import os

#FTP_HOST = os.getenv("FTP_HOST")
FTP_USER = os.getenv("FTP_USER")
#FTP_PASS = os.getenv("FTP_PASS")
FTP_DIR = os.getenv("FTP_DIR")
FTP_HOST = "1ink.us"
#FTP_USER = "ford442"
FTP_PASS = "GoogleBez12!"
#FTP_DIR = "1ink.us/stable_diff/"  # Remote directory on FTP server

def scheduler_swap_callback(pipeline, step_index, timestep, callback_kwargs):
        # adjust the batch_size of prompt_embeds according to guidance_scale
    if step_index == int(pipeline.num_timesteps * 0.1):
        print("-- swapping torch modes --")
      #  pipeline.scheduler = euler_scheduler
        torch.set_float32_matmul_precision("high")
       # pipe.vae = vae_b
        torch.backends.cudnn.allow_tf32 = True
        torch.backends.cuda.matmul.allow_tf32 = True
        torch.backends.cudnn.deterministic = True
        torch.backends.cuda.preferred_blas_library="cublaslt"
    #if step_index == int(pipeline.num_timesteps * 0.5):
       # torch.set_float32_matmul_precision("medium")
        #callback_kwargs["latents"] = callback_kwargs["latents"].to(torch.float64)
        #pipe.unet.to(torch.float64)
      #  pipe.guidance_scale=1.0
       # pipe.scheduler.set_timesteps(num_inference_steps*.70)
      #  print(f"-- setting step {pipeline.num_timesteps * 0.1} --")
      #  pipeline.scheduler._step_index = pipeline.num_timesteps * 0.1 
    if step_index == int(pipeline.num_timesteps * 0.9):
        torch.backends.cuda.preferred_blas_library="cublas"
        torch.backends.cudnn.allow_tf32 = False
        torch.backends.cuda.matmul.allow_tf32 = False
        torch.set_float32_matmul_precision("highest")
        #callback_kwargs["latents"] = callback_kwargs["latents"].to(torch.bfloat16)
        #pipe.unet.to(torch.float64)
        #pipeline.unet.set_default_attn_processor()            ##   custom    ##
     #   pipe.vae = vae_a
     #   pipe.unet = unet_a
        torch.backends.cudnn.deterministic = False
        print("-- swapping torch modes --")
      #  pipeline.scheduler = heun_scheduler
        #pipe.scheduler.set_timesteps(num_inference_steps*.70)
      #  print(f"-- setting step {pipeline.num_timesteps * 0.9} --")
      #  pipeline.scheduler._step_index = pipeline.num_timesteps * 0.9
    return callback_kwargs

def upload_to_ftp(filename):
    try:
        transport = paramiko.Transport((FTP_HOST, 22))
        destination_path=FTP_DIR+filename
        transport.connect(username = FTP_USER, password = FTP_PASS)
        sftp = paramiko.SFTPClient.from_transport(transport)
        sftp.put(filename, destination_path)
        sftp.close()
        transport.close()
        print(f"Uploaded {filename} to FTP server")
    except Exception as e:
        print(f"FTP upload error: {e}")
        
def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
    filename= f'rv_C_{timestamp}.txt'
    with open(filename, "w") as f:
        f.write(f"Realvis 5.0 (Tester C) \n")
        f.write(f"Date/time: {timestamp} \n")
        f.write(f"Prompt: {prompt} \n")
        f.write(f"Steps: {num_inference_steps} \n")
        f.write(f"Guidance Scale: {guidance_scale} \n")
        f.write(f"SPACE SETUP: \n")
        f.write(f"Model Scheduler: Euler_a all_custom before cuda \n")
        f.write(f"Model VAE: sdxl-vae-bf16\n")
        f.write(f"To cuda and bfloat \n")
    return filename
    
'''

pyx = cyper.inline(code, fast_indexing=True, directives=dict(boundscheck=False, wraparound=False, language_level=3))

@spaces.GPU(duration=30)
def generate_30(
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    style_selection: str = "",
    width: int = 768,
    height: int = 768,
    guidance_scale: float = 4,
    num_inference_steps: int = 125,
    use_resolution_binning: bool = True, 
    progress=gr.Progress(track_tqdm=True)  # Add progress as a keyword argument
):
    seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device='cuda').manual_seed(seed)
    options = {
        "prompt": [prompt],
        "negative_prompt": [negative_prompt],
        "negative_prompt_2": [neg_prompt_2],
        "width": width,
        "height": height,
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps,
        "generator": generator,
        "output_type": "pil",
        "callback_on_step_end": pyx.scheduler_swap_callback,
    }
    if use_resolution_binning:
        options["use_resolution_binning"] = True
    images = []
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    filename = pyx.uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
    #upload_to_ftp(filename) 
    pyx.upload_to_ftp(filename) 
    #uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
    batch_options = options.copy()
    with torch.inference_mode():
        rv_image = pipe(**batch_options).images[0]
    sd_image_path = f"rv_C_{timestamp}.png"
    rv_image.save(sd_image_path,optimize=False,compress_level=0)
    pyx.upload_to_ftp(sd_image_path)    
    torch.set_float32_matmul_precision("medium")
    with torch.no_grad():
        upscale = upscaler(rv_image, tiling=True, tile_width=256, tile_height=256)
    downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
    downscale_path = f"rv50_upscale_{timestamp}.png"
    downscale1.save(downscale_path,optimize=False,compress_level=0)
    pyx.upload_to_ftp(downscale_path) 
    unique_name = str(uuid.uuid4()) + ".png"  
    os.symlink(sd_image_path, unique_name)  
    return [unique_name]

@spaces.GPU(duration=60)
def generate_60(
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    style_selection: str = "",
    width: int = 768,
    height: int = 768,
    guidance_scale: float = 4,
    num_inference_steps: int = 125,
    use_resolution_binning: bool = True, 
    progress=gr.Progress(track_tqdm=True)  # Add progress as a keyword argument
):
    seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device='cuda').manual_seed(seed)
    options = {
        "prompt": [prompt],
        "negative_prompt": [negative_prompt],
        "negative_prompt_2": [neg_prompt_2],
        "width": width,
        "height": height,
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps,
        "generator": generator,
        "output_type": "pil",
        "callback_on_step_end": pyx.scheduler_swap_callback,
    }
    if use_resolution_binning:
        options["use_resolution_binning"] = True
    images = []
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
    batch_options = options.copy()
    with torch.inference_mode():
        rv_image = pipe(**batch_options).images[0]
    sd_image_path = f"rv_C_{timestamp}.png"
    rv_image.save(sd_image_path,optimize=False,compress_level=0)
    upload_to_ftp(sd_image_path)    
    unique_name = str(uuid.uuid4()) + ".png"  
    os.symlink(sd_image_path, unique_name)  
    return [unique_name]
    
@spaces.GPU(duration=90)
def generate_90(
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    style_selection: str = "",
    width: int = 768,
    height: int = 768,
    guidance_scale: float = 4,
    num_inference_steps: int = 125,
    use_resolution_binning: bool = True, 
    progress=gr.Progress(track_tqdm=True)  # Add progress as a keyword argument
):
    seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device='cuda').manual_seed(seed)
    options = {
        "prompt": [prompt],
        "negative_prompt": [negative_prompt],
        "negative_prompt_2": [neg_prompt_2],
        "width": width,
        "height": height,
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps,
        "generator": generator,
        "output_type": "pil",
        "callback_on_step_end": pyx.scheduler_swap_callback,
    }
    if use_resolution_binning:
        options["use_resolution_binning"] = True
    images = []
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
    batch_options = options.copy()
    with torch.inference_mode():
        rv_image = pipe(**batch_options).images[0]
    sd_image_path = f"rv_C_{timestamp}.png"
    rv_image.save(sd_image_path,optimize=False,compress_level=0)
    upload_to_ftp(sd_image_path)    
    unique_name = str(uuid.uuid4()) + ".png"  
    os.symlink(sd_image_path, unique_name)  
    return [unique_name]

def load_predefined_images1():
    predefined_images1 = [
        "assets/7.png",
        "assets/8.png",
        "assets/9.png",
        "assets/1.png",
        "assets/2.png",
        "assets/3.png",
        "assets/4.png",
        "assets/5.png",
        "assets/6.png",
    ]
    return predefined_images1

css = '''
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
h1{text-align:center}
footer {
    visibility: hidden
}
body {
  background-color: green;
}
'''

with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
    gr.Markdown(DESCRIPTIONXX)
    with gr.Row():
        prompt = gr.Text(
            label="Prompt",
            show_label=False,
            max_lines=1,
            placeholder="Enter your prompt",
            container=False,
        )
        run_button_30 = gr.Button("Run 30 Seconds", scale=0)
        run_button_60 = gr.Button("Run 60 Seconds", scale=0)
        run_button_90 = gr.Button("Run 90 Seconds", scale=0)
    result = gr.Gallery(label="Result", columns=1, show_label=False) 

    with gr.Row():

        style_selection = gr.Radio(
            show_label=True,
            container=True,
            interactive=True,
            choices=STYLE_NAMES,
            value=DEFAULT_STYLE_NAME,
            label="Quality Style",
        )
        with gr.Row():
            with gr.Column(scale=1):
                use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
                negative_prompt = gr.Text(
                    label="Negative prompt",
                    max_lines=5,
                    lines=4,
                    placeholder="Enter a negative prompt",
                    value="('deformed', 'distorted', 'disfigured':1.3),'not photorealistic':1.5, 'poorly drawn', 'bad anatomy', 'wrong anatomy', 'extra limb', 'missing limb', 'floating limbs', 'poorly drawn hands', 'poorly drawn feet', 'poorly drawn face':1.3, 'out of frame', 'extra limbs', 'bad anatomy', 'bad art', 'beginner',  'distorted face','amateur'",
                    visible=True,
                )
        with gr.Row():
            width = gr.Slider(
                label="Width",
                minimum=448,
                maximum=MAX_IMAGE_SIZE,
                step=64,
                value=768,
            )
            height = gr.Slider(
                label="Height",
                minimum=448,
                maximum=MAX_IMAGE_SIZE,
                step=64,
                value=768,
            )
        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance Scale",
                minimum=0.1,
                maximum=30,
                step=0.1,
                value=3.8,
            )
            num_inference_steps = gr.Slider(
                label="Number of inference steps",
                minimum=10,
                maximum=1000,
                step=10,
                value=170,
            )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        cache_examples=False
    )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        api_name=False,
    )
    
    gr.on(
        triggers=[
            run_button_30.click,
        ],
      #  api_name="generate",  # Add this line
        fn=generate_30,
        inputs=[
            prompt,
            negative_prompt,
            use_negative_prompt,
            style_selection,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result],
    )
    
    gr.on(
        triggers=[
            run_button_60.click,
        ],
      #  api_name="generate",  # Add this line
        fn=generate_60,
        inputs=[
            prompt,
            negative_prompt,
            use_negative_prompt,
            style_selection,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result],
    )
    
    gr.on(
        triggers=[
            run_button_90.click,
        ],
      #  api_name="generate",  # Add this line
        fn=generate_90,
        inputs=[
            prompt,
            negative_prompt,
            use_negative_prompt,
            style_selection,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result],
    )

    gr.Markdown("### REALVISXL V5.0")
    predefined_gallery = gr.Gallery(label="REALVISXL V5.0", columns=3, show_label=False, value=load_predefined_images1())

    #gr.Markdown("### LIGHTNING V5.0")
    #predefined_gallery = gr.Gallery(label="LIGHTNING V5.0", columns=3, show_label=False, value=load_predefined_images())

    gr.Markdown(
    """
    <div style="text-align: justify;">
    ⚡Models used in the playground <a href="https://huggingface.co/SG161222/RealVisXL_V5.0">[REALVISXL V5.0]</a>, <a href="https://huggingface.co/SG161222/RealVisXL_V5.0_Lightning">[REALVISXL V5.0 LIGHTNING]</a> for image generation. Stable Diffusion XL piped (SDXL) model HF. This is the demo space for generating images using the Stable Diffusion XL models, with multiple different variants available.
    </div>
    """)

    gr.Markdown(
    """
    <div style="text-align: justify;">
    ⚡This is the demo space for generating images using Stable Diffusion XL with quality styles, different models, and types. Try the sample prompts to generate higher quality images. Try the sample prompts for generating higher quality images. 
    <a href='https://huggingface.co/spaces/prithivMLmods/Top-Prompt-Collection' target='_blank'>Try prompts</a>.
    </div>
    """)

    gr.Markdown(
    """
    <div style="text-align: justify;">
    ⚠️ Users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards.
    </div>
    """) 

def text_generation(input_text, seed):
    full_prompt = "Text Generator Application by ecarbo"
    return full_prompt
    
title = "Text Generator Demo GPT-Neo"
description = "Text Generator Application by ecarbo"

if __name__ == "__main__":
    demo_interface = demo.queue(max_size=50)  # Remove .launch() here

    text_gen_interface = gr.Interface(
        fn=text_generation,
        inputs=[
            gr.Textbox(lines=1, label="Expand the following prompt to be more detailed and descriptive for image generation: "),
            gr.Number(value=10, label="Enter seed number")
        ],
        outputs=gr.Textbox(label="Text Generated"),
        title=title,
        description=description,
    )

    combined_interface = gr.TabbedInterface([demo_interface, text_gen_interface], ["Image Generation", "Text Generation"])
    combined_interface.launch(show_api=False)