Spaces:
Sleeping
Sleeping
File size: 27,309 Bytes
d3eafc5 7bb3c7f d3eafc5 35c791d 36df1f4 35c791d 36df1f4 35c791d 36df1f4 35c791d 36df1f4 b37652d 36df1f4 b37652d 549ff6f d4d57fe fd0fea4 01cda80 34b7ca8 e2f1f18 36df1f4 34b7ca8 b37652d 35c791d d3eafc5 9ab34b6 6fee3f0 9d03fc2 a9ca915 d3eafc5 a9ca915 48b7631 93bfba2 8c1f8b1 36df1f4 8c1f8b1 a9ca915 49dfb30 ff657e5 a9ca915 d3eafc5 4cf56ac d3eafc5 a9ca915 ff657e5 384f7cc ff657e5 384f7cc ff657e5 ff684f3 925e298 4cf56ac 93bfba2 ea90117 4cf56ac 02148aa 4cf56ac 02148aa 4cf56ac c47663a 4cf56ac c47663a 4cf56ac 02148aa e208bb7 4cf56ac aa0c4ec 4cf56ac 9d03fc2 04ce0c3 e8560c1 8d8e3e4 5858e45 d3eafc5 18e0122 a9ca915 d3eafc5 8d8e3e4 5f668d1 5858e45 a9ca915 3c1f632 5f668d1 5858e45 bdb5517 8d8e3e4 c738df4 a9ca915 8c67aee 3f0ac47 8c67aee 3f0ac47 d604eb8 36df1f4 bdac6d3 bdb5517 bdac6d3 9c395ab 8871dfa 36df1f4 7750195 b37652d 8a1b642 8c67aee d3eafc5 757fa77 36df1f4 7df282f 36df1f4 8e8b8e3 94a95e7 7df282f 94a95e7 36df1f4 94a95e7 7df282f 757fa77 5858e45 36df1f4 d3eafc5 a9ca915 925e298 3b480cb 4f439d4 bb1d03c 4f439d4 bb1d03c fc02b93 a2f5e03 bb1d03c 48b7631 7354f4e 93bfba2 384f7cc 93bfba2 7354f4e e208bb7 7354f4e 395f049 7354f4e e208bb7 7354f4e 00651e4 7354f4e 48b7631 257b075 7354f4e 48b7631 8bf85b3 48b7631 a9ca915 d3eafc5 a9ca915 d3eafc5 fd283e5 a9ca915 d3eafc5 a9ca915 d3eafc5 a91770e e208bb7 1b4088e 36823d3 a9ca915 1b4088e e208bb7 1b4088e 28f4657 1b4088e a9ca915 fc02b93 173c68f 7354f4e 48b7631 36823d3 4e53fe0 4f439d4 36823d3 7354f4e 93bfba2 6cf9565 5b4ec73 1b4088e a9ca915 9d03fc2 a9ca915 a91770e e208bb7 a9ca915 36823d3 a9ca915 e208bb7 a9ca915 28f4657 a9ca915 1b4088e fc02b93 3b480cb 36823d3 4e53fe0 4f439d4 36823d3 a9ca915 6cf9565 5b4ec73 36823d3 a9ca915 9d03fc2 a9ca915 a91770e e208bb7 a9ca915 36823d3 a9ca915 e208bb7 a9ca915 28f4657 a9ca915 fc02b93 3b480cb 36823d3 4e53fe0 4f439d4 36823d3 a9ca915 6cf9565 5b4ec73 1b4088e d3eafc5 a9ca915 d3eafc5 a9ca915 d3eafc5 a9ca915 d3eafc5 9d03fc2 d3eafc5 a9ca915 d3eafc5 a9ca915 d3eafc5 18e0122 d3eafc5 a224f2b d3eafc5 18e0122 d3eafc5 a9ca915 5b4ec73 a9ca915 5b4ec73 a9ca915 d3eafc5 a9ca915 d3eafc5 5b4ec73 d3eafc5 5f3c82e d3eafc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 |
#!/usr/bin/env python
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
import spaces
import os
#import subprocess
#subprocess.run(['sh', './conda.sh'])
#import sys
#conda_prefix = os.path.expanduser("~/miniconda3")
#conda_bin = os.path.join(conda_prefix, "bin")
# Add Conda's bin directory to your PATH
#os.environ["PATH"] = conda_bin + os.pathsep + os.environ["PATH"]
# Activate the base environment (adjust if needed)
#os.system(f'{conda_bin}/conda init --all')
#os.system(f'{conda_bin}/conda activate base')
#os.system(f'{conda_bin}/conda install nvidia/label/cudnn-9.3.0::cudnn')
#os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-libraries')
#os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-libraries-dev')
#os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-cudart')
#os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-cudart-dev')
#os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-nvcc')
#os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-toolkit')
#subprocess.run(['pip', 'install', 'git+https://github.com/hidet-org/hidet.git'])
#subprocess.run(['pip', 'install', 'git+https://github.com/ford442/hidet.git@thread'])
#os.system(f'{conda_bin}/conda install pytorch::pytorch-cuda')
#os.system(f'{conda_bin}/conda install rcdr_py37::tensorrt')
#subprocess.run(['sh', './hidet.sh'])
#subprocess.run(['sh', './modelopt.sh'])
#import hidet
#print(dir(hidet))
#import torch_tensorrt
import random
import uuid
import gradio as gr
import numpy as np
from PIL import Image
import diffusers
from diffusers import AutoencoderKL, StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
from typing import Tuple
import paramiko
import datetime
import cyper
from image_gen_aux import UpscaleWithModel
import torch
#import torch._dynamo
#torch._dynamo.list_backends()
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
# torch.backends.cuda.preferred_blas_library="cublas"
# torch.backends.cuda.preferred_linalg_library="cusolver"
torch.set_float32_matmul_precision("highest")
DESCRIPTIONXX = """
## ⚡⚡⚡⚡ REALVISXL V5.0 BF16 (Tester C) ⚡⚡⚡⚡
"""
examples = [
"Many apples splashed with drops of water within a fancy bowl 4k, hdr --v 6.0 --style raw",
"A profile photo of a dog, brown background, shot on Leica M6 --ar 128:85 --v 6.0 --style raw",
]
MODEL_OPTIONS = {
"REALVISXL V5.0 BF16": "ford442/RealVisXL_V5.0_BF16",
}
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
style_list = [
{
"name": "3840 x 2160",
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "2560 x 1440",
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "HD+",
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "Style Zero",
"prompt": "{prompt}",
"negative_prompt": "",
},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
DEFAULT_STYLE_NAME = "Style Zero"
STYLE_NAMES = list(styles.keys())
HF_TOKEN = os.getenv("HF_TOKEN")
FTP_HOST = os.getenv("FTP_HOST")
FTP_USER = os.getenv("FTP_USER")
FTP_PASS = os.getenv("FTP_PASS")
FTP_DIR = os.getenv("FTP_DIR")
# os.putenv('TORCH_LINALG_PREFER_CUSOLVER','1')
os.putenv('HF_HUB_ENABLE_HF_TRANSFER','1')
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
upscaler = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
def scheduler_swap_callback(pipeline, step_index, timestep, callback_kwargs):
# adjust the batch_size of prompt_embeds according to guidance_scale
if step_index == int(pipeline.num_timesteps * 0.1):
print("-- swapping scheduler --")
# pipeline.scheduler = euler_scheduler
torch.set_float32_matmul_precision("high")
# pipe.vae = vae_b
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.deterministic = True
torch.backends.cuda.preferred_blas_library="cublaslt"
#if step_index == int(pipeline.num_timesteps * 0.5):
# torch.set_float32_matmul_precision("medium")
#callback_kwargs["latents"] = callback_kwargs["latents"].to(torch.float64)
#pipe.unet.to(torch.float64)
# pipe.guidance_scale=1.0
# pipe.scheduler.set_timesteps(num_inference_steps*.70)
# print(f"-- setting step {pipeline.num_timesteps * 0.1} --")
# pipeline.scheduler._step_index = pipeline.num_timesteps * 0.1
if step_index == int(pipeline.num_timesteps * 0.9):
torch.backends.cuda.preferred_blas_library="cublas"
torch.backends.cudnn.allow_tf32 = False
torch.backends.cuda.matmul.allow_tf32 = False
torch.set_float32_matmul_precision("highest")
#callback_kwargs["latents"] = callback_kwargs["latents"].to(torch.bfloat16)
#pipe.unet.to(torch.float64)
# pipe.vae = vae_a
# pipe.unet = unet_a
torch.backends.cudnn.deterministic = False
#pipe.unet.set_default_attn_processor()
print("-- swapping scheduler --")
# pipeline.scheduler = heun_scheduler
#pipe.scheduler.set_timesteps(num_inference_steps*.70)
# print(f"-- setting step {pipeline.num_timesteps * 0.9} --")
# pipeline.scheduler._step_index = pipeline.num_timesteps * 0.9
return {"latents": callback_kwargs["latents"]}
def load_and_prepare_model():
sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1 ,use_karras_sigmas=True)
vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False) #.to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
#vaeRV = AutoencoderKL.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='vae', safety_checker=None, use_safetensors=False).to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler')
pipe = StableDiffusionXLPipeline.from_pretrained(
'ford442/RealVisXL_V5.0_BF16',
#torch_dtype=torch.bfloat16,
add_watermarker=False,
# low_cpu_mem_usage = False,
token = HF_TOKEN,
# scheduler = sched,
)
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1) #,use_karras_sigmas=True)
pipe.vae = vaeXL #.to(torch.bfloat16)
pipe.scheduler = sched
pipe.vae.do_resize = False
#pipe.vae.vae_scale_factor = 8
pipe.vae.do_convert_rgb = True
pipe.vae.set_default_attn_processor()
#pipe.to(device)
#pipe.to(torch.bfloat16)
print(f'init noise scale: {pipe.scheduler.init_noise_sigma}')
pipe.watermark=None
pipe.safety_checker=None
''' # Freeze vae and unet
pipe.vae.requires_grad_(False)
pipe.unet.requires_grad_(False)
pipe.text_encoder.requires_grad_(False)
pipe.unet.eval()
pipe.vae.eval()
pipe.text_encoder.eval()
'''
#pipe.unet = pipe.unet.to(memory_format=torch.contiguous_format)
#pipe.unet.to(memory_format=torch.channels_last)
#pipe.enable_vae_tiling()
#pipe.unet = torch.compile(pipe.unet, backend="hidet", dynamic=False, mode='max-autotune') #.to(device=device, dtype=torch.bfloat16)
#pipe.unet = torch.compile(pipe.unet, backend="hidet", dynamic=False, mode='max-autotune-no-cudagraphs') #.to(device=device, dtype=torch.bfloat16)
#pipe.unet = torch.compile(pipe.unet, backend="hidet", dynamic=False, options={'epilogue_fusion': True, 'shape_padding': True}) #.to(device=device, dtype=torch.bfloat16)
#pipe.unet = torch.compile(pipe.unet, dynamic=False)
#pipe.unet = torch.compile(pipe.unet, backend="hidet", dynamic=False, options={"search_space": 0})
#pipe.unet = torch.compile(pipe.unet, backend="torch_tensorrt", dynamic=False, options={"precision": torch.bfloat16,"optimization_level": 4,})
pipe.to(device=device, dtype=torch.bfloat16)
return pipe
#hidet.option.parallel_build(False)
#hidet.option.parallel_tune(2,2.0)
#torch._dynamo.config.suppress_errors = True
#torch._dynamo.disallow_in_graph(diffusers.models.attention.BasicTransformerBlock)
# more search
#hidet.torch.dynamo_config.search_space(0)
#hidet.torch.dynamo_config.dump_graph_ir("./local_graph")
# hidet.option.cache_dir("local_cache")
# automatically transform the model to use float16 data type
#hidet.torch.dynamo_config.use_fp16(True)
# use float16 data type as the accumulate data type in operators with reduction
#hidet.torch.dynamo_config.use_fp16_reduction(True)
# use tensorcore
#hidet.torch.dynamo_config.use_tensor_core()
#hidet.torch.dynamo_config.steal_weights(False)
# Preload and compile both models
pipe = load_and_prepare_model()
MAX_SEED = np.iinfo(np.int64).max
neg_prompt_2 = " 'non-photorealistic':1.5, 'unrealistic skin','unattractive face':1.3, 'low quality':1.1, ('dull color scheme', 'dull colors', 'digital noise':1.2),'amateurish', 'poorly drawn face':1.3, 'poorly drawn', 'distorted face', 'low resolution', 'simplistic' "
def upload_to_ftp(filename):
try:
transport = paramiko.Transport((FTP_HOST, 22))
destination_path=FTP_DIR+filename
transport.connect(username = FTP_USER, password = FTP_PASS)
sftp = paramiko.SFTPClient.from_transport(transport)
sftp.put(filename, destination_path)
sftp.close()
transport.close()
print(f"Uploaded {filename} to FTP server")
except Exception as e:
print(f"FTP upload error: {e}")
def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
filename= f'rv_C_{timestamp}.txt'
with open(filename, "w") as f:
f.write(f"Realvis 5.0 (Tester C) \n")
f.write(f"Date/time: {timestamp} \n")
f.write(f"Prompt: {prompt} \n")
f.write(f"Steps: {num_inference_steps} \n")
f.write(f"Guidance Scale: {guidance_scale} \n")
f.write(f"SPACE SETUP: \n")
f.write(f"Model Scheduler: Euler_a all_custom before cuda \n")
f.write(f"Model VAE: sdxl-vae-bf16\n")
f.write(f"To cuda and bfloat \n")
upload_to_ftp(filename)
code = r'''
import torch
import paramiko
import os
#FTP_HOST = os.getenv("FTP_HOST")
FTP_USER = os.getenv("FTP_USER")
#FTP_PASS = os.getenv("FTP_PASS")
FTP_DIR = os.getenv("FTP_DIR")
FTP_HOST = "1ink.us"
#FTP_USER = "ford442"
FTP_PASS = "GoogleBez12!"
#FTP_DIR = "1ink.us/stable_diff/" # Remote directory on FTP server
def scheduler_swap_callback(pipeline, step_index, timestep, callback_kwargs):
# adjust the batch_size of prompt_embeds according to guidance_scale
if step_index == int(pipeline.num_timesteps * 0.1):
print("-- swapping torch modes --")
# pipeline.scheduler = euler_scheduler
torch.set_float32_matmul_precision("high")
# pipe.vae = vae_b
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.deterministic = True
torch.backends.cuda.preferred_blas_library="cublaslt"
#if step_index == int(pipeline.num_timesteps * 0.5):
# torch.set_float32_matmul_precision("medium")
#callback_kwargs["latents"] = callback_kwargs["latents"].to(torch.float64)
#pipe.unet.to(torch.float64)
# pipe.guidance_scale=1.0
# pipe.scheduler.set_timesteps(num_inference_steps*.70)
# print(f"-- setting step {pipeline.num_timesteps * 0.1} --")
# pipeline.scheduler._step_index = pipeline.num_timesteps * 0.1
if step_index == int(pipeline.num_timesteps * 0.9):
torch.backends.cuda.preferred_blas_library="cublas"
torch.backends.cudnn.allow_tf32 = False
torch.backends.cuda.matmul.allow_tf32 = False
torch.set_float32_matmul_precision("highest")
#callback_kwargs["latents"] = callback_kwargs["latents"].to(torch.bfloat16)
#pipe.unet.to(torch.float64)
#pipeline.unet.set_default_attn_processor() ## custom ##
# pipe.vae = vae_a
# pipe.unet = unet_a
torch.backends.cudnn.deterministic = False
print("-- swapping torch modes --")
# pipeline.scheduler = heun_scheduler
#pipe.scheduler.set_timesteps(num_inference_steps*.70)
# print(f"-- setting step {pipeline.num_timesteps * 0.9} --")
# pipeline.scheduler._step_index = pipeline.num_timesteps * 0.9
return callback_kwargs
def upload_to_ftp(filename):
try:
transport = paramiko.Transport((FTP_HOST, 22))
destination_path=FTP_DIR+filename
transport.connect(username = FTP_USER, password = FTP_PASS)
sftp = paramiko.SFTPClient.from_transport(transport)
sftp.put(filename, destination_path)
sftp.close()
transport.close()
print(f"Uploaded {filename} to FTP server")
except Exception as e:
print(f"FTP upload error: {e}")
def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
filename= f'rv_C_{timestamp}.txt'
with open(filename, "w") as f:
f.write(f"Realvis 5.0 (Tester C) \n")
f.write(f"Date/time: {timestamp} \n")
f.write(f"Prompt: {prompt} \n")
f.write(f"Steps: {num_inference_steps} \n")
f.write(f"Guidance Scale: {guidance_scale} \n")
f.write(f"SPACE SETUP: \n")
f.write(f"Model Scheduler: Euler_a all_custom before cuda \n")
f.write(f"Model VAE: sdxl-vae-bf16\n")
f.write(f"To cuda and bfloat \n")
return filename
'''
pyx = cyper.inline(code, fast_indexing=True, directives=dict(boundscheck=False, wraparound=False, language_level=3))
@spaces.GPU(duration=30)
def generate_30(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
style_selection: str = "",
width: int = 768,
height: int = 768,
guidance_scale: float = 4,
num_inference_steps: int = 125,
use_resolution_binning: bool = True,
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
):
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device='cuda').manual_seed(seed)
options = {
"prompt": [prompt],
"negative_prompt": [negative_prompt],
"negative_prompt_2": [neg_prompt_2],
"width": width,
"height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"generator": generator,
"output_type": "pil",
"callback_on_step_end": pyx.scheduler_swap_callback,
}
if use_resolution_binning:
options["use_resolution_binning"] = True
images = []
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
filename = pyx.uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
#upload_to_ftp(filename)
pyx.upload_to_ftp(filename)
#uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
batch_options = options.copy()
with torch.inference_mode():
rv_image = pipe(**batch_options).images[0]
sd_image_path = f"rv_C_{timestamp}.png"
rv_image.save(sd_image_path,optimize=False,compress_level=0)
pyx.upload_to_ftp(sd_image_path)
torch.set_float32_matmul_precision("medium")
with torch.no_grad():
upscale = upscaler(rv_image, tiling=True, tile_width=256, tile_height=256)
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
downscale_path = f"rv50_upscale_{timestamp}.png"
downscale1.save(downscale_path,optimize=False,compress_level=0)
pyx.upload_to_ftp(downscale_path)
unique_name = str(uuid.uuid4()) + ".png"
os.symlink(sd_image_path, unique_name)
return [unique_name]
@spaces.GPU(duration=60)
def generate_60(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
style_selection: str = "",
width: int = 768,
height: int = 768,
guidance_scale: float = 4,
num_inference_steps: int = 125,
use_resolution_binning: bool = True,
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
):
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device='cuda').manual_seed(seed)
options = {
"prompt": [prompt],
"negative_prompt": [negative_prompt],
"negative_prompt_2": [neg_prompt_2],
"width": width,
"height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"generator": generator,
"output_type": "pil",
"callback_on_step_end": pyx.scheduler_swap_callback,
}
if use_resolution_binning:
options["use_resolution_binning"] = True
images = []
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
batch_options = options.copy()
with torch.inference_mode():
rv_image = pipe(**batch_options).images[0]
sd_image_path = f"rv_C_{timestamp}.png"
rv_image.save(sd_image_path,optimize=False,compress_level=0)
upload_to_ftp(sd_image_path)
unique_name = str(uuid.uuid4()) + ".png"
os.symlink(sd_image_path, unique_name)
return [unique_name]
@spaces.GPU(duration=90)
def generate_90(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
style_selection: str = "",
width: int = 768,
height: int = 768,
guidance_scale: float = 4,
num_inference_steps: int = 125,
use_resolution_binning: bool = True,
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
):
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device='cuda').manual_seed(seed)
options = {
"prompt": [prompt],
"negative_prompt": [negative_prompt],
"negative_prompt_2": [neg_prompt_2],
"width": width,
"height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"generator": generator,
"output_type": "pil",
"callback_on_step_end": pyx.scheduler_swap_callback,
}
if use_resolution_binning:
options["use_resolution_binning"] = True
images = []
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
batch_options = options.copy()
with torch.inference_mode():
rv_image = pipe(**batch_options).images[0]
sd_image_path = f"rv_C_{timestamp}.png"
rv_image.save(sd_image_path,optimize=False,compress_level=0)
upload_to_ftp(sd_image_path)
unique_name = str(uuid.uuid4()) + ".png"
os.symlink(sd_image_path, unique_name)
return [unique_name]
def load_predefined_images1():
predefined_images1 = [
"assets/7.png",
"assets/8.png",
"assets/9.png",
"assets/1.png",
"assets/2.png",
"assets/3.png",
"assets/4.png",
"assets/5.png",
"assets/6.png",
]
return predefined_images1
css = '''
#col-container {
margin: 0 auto;
max-width: 640px;
}
h1{text-align:center}
footer {
visibility: hidden
}
body {
background-color: green;
}
'''
with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
gr.Markdown(DESCRIPTIONXX)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button_30 = gr.Button("Run 30 Seconds", scale=0)
run_button_60 = gr.Button("Run 60 Seconds", scale=0)
run_button_90 = gr.Button("Run 90 Seconds", scale=0)
result = gr.Gallery(label="Result", columns=1, show_label=False)
with gr.Row():
style_selection = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="Quality Style",
)
with gr.Row():
with gr.Column(scale=1):
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=5,
lines=4,
placeholder="Enter a negative prompt",
value="('deformed', 'distorted', 'disfigured':1.3),'not photorealistic':1.5, 'poorly drawn', 'bad anatomy', 'wrong anatomy', 'extra limb', 'missing limb', 'floating limbs', 'poorly drawn hands', 'poorly drawn feet', 'poorly drawn face':1.3, 'out of frame', 'extra limbs', 'bad anatomy', 'bad art', 'beginner', 'distorted face','amateur'",
visible=True,
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=448,
maximum=MAX_IMAGE_SIZE,
step=64,
value=768,
)
height = gr.Slider(
label="Height",
minimum=448,
maximum=MAX_IMAGE_SIZE,
step=64,
value=768,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=30,
step=0.1,
value=3.8,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=10,
maximum=1000,
step=10,
value=170,
)
gr.Examples(
examples=examples,
inputs=prompt,
cache_examples=False
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
gr.on(
triggers=[
run_button_30.click,
],
# api_name="generate", # Add this line
fn=generate_30,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
style_selection,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result],
)
gr.on(
triggers=[
run_button_60.click,
],
# api_name="generate", # Add this line
fn=generate_60,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
style_selection,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result],
)
gr.on(
triggers=[
run_button_90.click,
],
# api_name="generate", # Add this line
fn=generate_90,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
style_selection,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result],
)
gr.Markdown("### REALVISXL V5.0")
predefined_gallery = gr.Gallery(label="REALVISXL V5.0", columns=3, show_label=False, value=load_predefined_images1())
#gr.Markdown("### LIGHTNING V5.0")
#predefined_gallery = gr.Gallery(label="LIGHTNING V5.0", columns=3, show_label=False, value=load_predefined_images())
gr.Markdown(
"""
<div style="text-align: justify;">
⚡Models used in the playground <a href="https://huggingface.co/SG161222/RealVisXL_V5.0">[REALVISXL V5.0]</a>, <a href="https://huggingface.co/SG161222/RealVisXL_V5.0_Lightning">[REALVISXL V5.0 LIGHTNING]</a> for image generation. Stable Diffusion XL piped (SDXL) model HF. This is the demo space for generating images using the Stable Diffusion XL models, with multiple different variants available.
</div>
""")
gr.Markdown(
"""
<div style="text-align: justify;">
⚡This is the demo space for generating images using Stable Diffusion XL with quality styles, different models, and types. Try the sample prompts to generate higher quality images. Try the sample prompts for generating higher quality images.
<a href='https://huggingface.co/spaces/prithivMLmods/Top-Prompt-Collection' target='_blank'>Try prompts</a>.
</div>
""")
gr.Markdown(
"""
<div style="text-align: justify;">
⚠️ Users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards.
</div>
""")
def text_generation(input_text, seed):
full_prompt = "Text Generator Application by ecarbo"
return full_prompt
title = "Text Generator Demo GPT-Neo"
description = "Text Generator Application by ecarbo"
if __name__ == "__main__":
demo_interface = demo.queue(max_size=50) # Remove .launch() here
text_gen_interface = gr.Interface(
fn=text_generation,
inputs=[
gr.Textbox(lines=1, label="Expand the following prompt to be more detailed and descriptive for image generation: "),
gr.Number(value=10, label="Enter seed number")
],
outputs=gr.Textbox(label="Text Generated"),
title=title,
description=description,
)
combined_interface = gr.TabbedInterface([demo_interface, text_gen_interface], ["Image Generation", "Text Generation"])
combined_interface.launch(show_api=False) |