File size: 16,351 Bytes
d8b0170
 
 
 
 
 
26a5d91
d8b0170
 
 
 
 
 
 
 
1e93dff
44d5ad0
d8b0170
44d5ad0
9e1dbe1
e9b19af
32f0bb8
6311068
 
 
 
adb3584
f8d4d9e
 
d4cc1fc
f8d4d9e
42081fd
f8d4d9e
7f33d1b
f8d4d9e
e313b15
 
42081fd
8690539
 
 
 
 
d8b0170
 
 
 
 
 
 
 
 
b57104a
d8b0170
 
 
 
 
 
 
 
 
 
 
 
 
 
2c86017
d8b0170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
992f631
2a2b4be
d8b0170
 
992f631
d8b0170
2c86017
fe5ba0f
8de4c61
9c048b3
8de4c61
d8b0170
 
 
 
 
966b4a8
d8b0170
036bef7
 
 
 
 
 
 
 
 
 
 
 
 
d8b0170
 
4e32b83
d8b0170
 
 
 
 
 
966b4a8
8cd08a4
eae1771
d8b0170
 
 
 
 
 
 
 
898b00e
6311068
d8b0170
 
 
8e1fc92
d8b0170
 
 
a6920aa
9a2fe8f
a6920aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71ad8aa
 
a6920aa
 
 
 
 
036bef7
4e32b83
036bef7
a6920aa
e9b19af
 
a6920aa
 
eae1771
 
 
a6920aa
 
 
 
 
 
 
 
eae1771
6311068
a6920aa
 
 
eae1771
a6920aa
 
 
4147862
eae1771
4147862
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71ad8aa
 
4147862
 
 
 
 
eae1771
 
 
4147862
eae1771
 
4147862
 
d8b0170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0b3ce3
dfbe7f1
d8b0170
 
 
 
 
 
21ba788
d8b0170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
898b00e
d8b0170
 
 
 
992f3e7
d8b0170
6311068
d8b0170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0b3ce3
 
 
d8b0170
e0b3ce3
eae1771
d8b0170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eae1771
a6920aa
 
eae1771
a6920aa
e0b3ce3
eae1771
a6920aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8b0170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
992f631
 
d8b0170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
#!/usr/bin/env python
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
import spaces

import os
import random
import uuid
import gradio as gr
import numpy as np
from PIL import Image
import torch
from diffusers import AutoencoderKL, StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
#from diffusers import AutoencoderKL
from typing import Tuple
#from transformers import AutoTokenizer, AutoModelForCausalLM
import paramiko
import gc
import time
#os.system("chmod +x ./cusparselt.sh")
#os.system("./cusparselt.sh")
#os.system("chmod +x ./cudnn.sh")
#os.system("./cudnn.sh")

torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
torch.backends.cuda.preferred_blas_library="cublas"
torch.backends.cuda.preferred_linalg_library="cusolver"

torch.set_float32_matmul_precision("highest")

FTP_HOST = "1ink.us"
FTP_USER = "ford442"
FTP_PASS = "GoogleBez12!"
FTP_DIR = "1ink.us/stable_diff/"  # Remote directory on FTP server

css = '''
.gradio-container{max-width: 570px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''

DESCRIPTIONXX = """
    ## REALVISXL V5.0 BF16 ⚡⚡⚡⚡
"""

examples = [

    "Many apples splashed with drops of water within a fancy bowl 4k, hdr  --v 6.0 --style raw",
    "A profile photo of a dog, brown background, shot on Leica M6 --ar 128:85 --v 6.0 --style raw",
]

MODEL_OPTIONS = {
    "REALVISXL V5.0 BF16": "ford442/RealVisXL_V5.0_BF16",
}

MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = 0
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

style_list = [
    {
        "name": "3840 x 2160",
        "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "2560 x 1440",
        "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "HD+",
        "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "Style Zero",
        "prompt": "{prompt}",
        "negative_prompt": "",
    },
]

styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
DEFAULT_STYLE_NAME = "Style Zero"
STYLE_NAMES = list(styles.keys())

def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
    if style_name in styles:
        p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    else:
        p, n = styles[DEFAULT_STYLE_NAME]
    if not negative:
        negative = ""
    return p.replace("{prompt}", positive), n + negative

def load_and_prepare_model(model_id):
    model_dtypes = {
        "ford442/RealVisXL_V5.0_BF16": torch.bfloat16,
    }
    dtype = model_dtypes.get(model_id, torch.bfloat16)  # Default to float32 if not found
    vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", torch_dtype=torch.bfloat16,safety_checker=None)
    pipe = StableDiffusionXLPipeline.from_pretrained(
        model_id,
        torch_dtype=torch.bfloat16,
        add_watermarker=False,
        use_safetensors=True,
        vae=vae,
    ).to('cuda')
    
    pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", algorithm_type="sde-dpmsolver++")
    return pipe

# Preload and compile both models
models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.items()}

MAX_SEED = np.iinfo(np.int32).max

def upload_to_ftp(filename):
    try:
        transport = paramiko.Transport((FTP_HOST, 22))
        destination_path=FTP_DIR+filename
        transport.connect(username = FTP_USER, password = FTP_PASS)
        sftp = paramiko.SFTPClient.from_transport(transport)
        sftp.put(filename, destination_path)
        sftp.close()
        transport.close()
        print(f"Uploaded {filename} to FTP server")
    except Exception as e:
        print(f"FTP upload error: {e}")
        
def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name,optimize=False,compress_level=0)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

@spaces.GPU(duration=60)
def generate_60(
    model_choice: str,
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    style_selection: str = DEFAULT_STYLE_NAME,
    seed: int = 1,
    width: int = 768,
    height: int = 768,
    guidance_scale: float = 3.0,
    num_inference_steps: int = 250,
    randomize_seed: bool = False,
    use_resolution_binning: bool = True, 
    num_images: int = 1,  
    progress=gr.Progress(track_tqdm=True)  # Add progress as a keyword argument
):
    global models
    pipe = models[model_choice]
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator(device='cuda').manual_seed(seed)

    prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)

    options = {
        "prompt": [prompt] * num_images,
        "negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
        "width": width,
        "height": height,
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps,
        "generator": generator,
        "output_type": "pil",
    }

    if use_resolution_binning:
        options["use_resolution_binning"] = True

    images = []
    with torch.no_grad():
      for i in range(0, num_images, BATCH_SIZE):
        batch_options = options.copy()
        batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
        if "negative_prompt" in batch_options:
            batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
        images.extend(pipe(**batch_options).images)
    sd_image_path = f"rv50_{seed}.png"
    images[0].save(sd_image_path,optimize=False,compress_level=0)
    upload_to_ftp(sd_image_path)    
    image_paths = [save_image(img) for img in images]
    torch.cuda.empty_cache()
    gc.collect()
    return image_paths, seed


@spaces.GPU(duration=90)
def generate_90(
    model_choice: str,
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    style_selection: str = DEFAULT_STYLE_NAME,
    seed: int = 1,
    width: int = 768,
    height: int = 768,
    guidance_scale: float = 3.0,
    num_inference_steps: int = 250,
    randomize_seed: bool = False,
    use_resolution_binning: bool = True, 
    num_images: int = 1,  
    progress=gr.Progress(track_tqdm=True)  # Add progress as a keyword argument
):
    global models
    pipe = models[model_choice]
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator(device='cuda').manual_seed(seed)

    prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)

    options = {
        "prompt": [prompt] * num_images,
        "negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
        "width": width,
        "height": height,
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps,
        "generator": generator,
        "output_type": "pil",
    }

    if use_resolution_binning:
        options["use_resolution_binning"] = True

    images = []
    with torch.no_grad():
      for i in range(0, num_images, BATCH_SIZE):
        batch_options = options.copy()
        batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
        if "negative_prompt" in batch_options:
            batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
        images.extend(pipe(**batch_options).images)
    sd_image_path = f"rv50_{seed}.png"
    images[0].save(sd_image_path,optimize=False,compress_level=0)
    upload_to_ftp(sd_image_path)    
    image_paths = [save_image(img) for img in images]
    torch.cuda.empty_cache()
    gc.collect()
    return image_paths, seed

def load_predefined_images1():
    predefined_images1 = [
        "assets/7.png",
        "assets/8.png",
        "assets/9.png",
        "assets/1.png",
        "assets/2.png",
        "assets/3.png",
        "assets/4.png",
        "assets/5.png",
        "assets/6.png",
    ]
    return predefined_images1


# def load_predefined_images():
#     predefined_images = [
#         "assets2/11.png",
#         "assets2/22.png",
#         "assets2/33.png",
#         "assets2/44.png",
#         "assets2/55.png",
#         "assets2/66.png",
#         "assets2/77.png",
#         "assets2/88.png",
#         "assets2/99.png",
#     ]
#     return predefined_image


with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
    gr.Markdown(DESCRIPTIONXX)
    with gr.Row():
        prompt = gr.Text(
            label="Prompt",
            show_label=False,
            max_lines=1,
            placeholder="Enter your prompt",
            container=False,
        )
        run_button_60 = gr.Button("Run_60", scale=0)
        run_button_90 = gr.Button("Run_90", scale=0)
    result = gr.Gallery(label="Result", columns=1, show_label=False) 

    with gr.Row():
        model_choice = gr.Dropdown(
            label="Model Selection🔻",
            choices=list(MODEL_OPTIONS.keys()),
            value="REALVISXL V5.0 BF16"
        )

        style_selection = gr.Radio(
            show_label=True,
            container=True,
            interactive=True,
            choices=STYLE_NAMES,
            value=DEFAULT_STYLE_NAME,
            label="Quality Style",
        )
        num_images = gr.Slider(
            label="Number of Images",
            minimum=1,
            maximum=5,
            step=1,
            value=1,
        )
        with gr.Row():
            with gr.Column(scale=1):
                use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
                negative_prompt = gr.Text(
                    label="Negative prompt",
                    max_lines=5,
                    lines=4,
                    placeholder="Enter a negative prompt",
                    value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
                    visible=True,
                )
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Row():
            width = gr.Slider(
                label="Width",
                minimum=448,
                maximum=MAX_IMAGE_SIZE,
                step=64,
                value=768,
            )
            height = gr.Slider(
                label="Height",
                minimum=448,
                maximum=MAX_IMAGE_SIZE,
                step=64,
                value=768,
            )
        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance Scale",
                minimum=0.1,
                maximum=6,
                step=0.1,
                value=3.0,
            )
            num_inference_steps = gr.Slider(
                label="Number of inference steps",
                minimum=10,
                maximum=1000,
                step=10,
                value=250,
            )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        cache_examples=False
    )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        api_name=False,
    )
    
    gr.on(
        triggers=[
            run_button_60.click,
        ],
      #  api_name="generate",  # Add this line
        fn=generate_60,
        inputs=[
            model_choice,
            prompt,
            negative_prompt,
            use_negative_prompt,
            style_selection,
            seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            randomize_seed, 
            num_images, 
        ],
        outputs=[result, seed],
    )
    
    gr.on(
        triggers=[
            run_button_90.click,
        ],
      #  api_name="generate",  # Add this line
        fn=generate_90,
        inputs=[
            model_choice,
            prompt,
            negative_prompt,
            use_negative_prompt,
            style_selection,
            seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            randomize_seed, 
            num_images, 
        ],
        outputs=[result, seed],
    )

    gr.Markdown("### REALVISXL V5.0")
    predefined_gallery = gr.Gallery(label="REALVISXL V5.0", columns=3, show_label=False, value=load_predefined_images1())

    #gr.Markdown("### LIGHTNING V5.0")
    #predefined_gallery = gr.Gallery(label="LIGHTNING V5.0", columns=3, show_label=False, value=load_predefined_images())

    gr.Markdown(
    """
    <div style="text-align: justify;">
    ⚡Models used in the playground <a href="https://huggingface.co/SG161222/RealVisXL_V5.0">[REALVISXL V5.0]</a>, <a href="https://huggingface.co/SG161222/RealVisXL_V5.0_Lightning">[REALVISXL V5.0 LIGHTNING]</a> for image generation. Stable Diffusion XL piped (SDXL) model HF. This is the demo space for generating images using the Stable Diffusion XL models, with multiple different variants available.
    </div>
    """)

    gr.Markdown(
    """
    <div style="text-align: justify;">
    ⚡This is the demo space for generating images using Stable Diffusion XL with quality styles, different models, and types. Try the sample prompts to generate higher quality images. Try the sample prompts for generating higher quality images. 
    <a href='https://huggingface.co/spaces/prithivMLmods/Top-Prompt-Collection' target='_blank'>Try prompts</a>.
    </div>
    """)

    gr.Markdown(
    """
    <div style="text-align: justify;">
    ⚠️ Users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards.
    </div>
    """) 

def text_generation(input_text, seed):
    full_prompt = "Text Generator Application by ecarbo"
    return full_prompt
    
title = "Text Generator Demo GPT-Neo"
description = "Text Generator Application by ecarbo"

if __name__ == "__main__":
    demo_interface = demo.queue(max_size=50)  # Remove .launch() here

    text_gen_interface = gr.Interface(
        fn=text_generation,
        inputs=[
            gr.Textbox(lines=1, label="Expand the following prompt to be more detailed and descriptive for image generation: "),
            gr.Number(value=10, label="Enter seed number")
        ],
        outputs=gr.Textbox(label="Text Generated"),
        title=title,
        description=description,
        theme="huggingface"
    )

    combined_interface = gr.TabbedInterface([demo_interface, text_gen_interface], ["Image Generation", "Text Generation"])
    combined_interface.launch(show_api=False)