Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,952 Bytes
d8b0170 26a5d91 d8b0170 1e93dff 44d5ad0 d8b0170 44d5ad0 9e1dbe1 e9b19af 32f0bb8 6311068 adb3584 f8d4d9e d4cc1fc f8d4d9e 42081fd f8d4d9e 7f33d1b f8d4d9e e313b15 42081fd 8690539 d8b0170 b57104a d8b0170 2c86017 d8b0170 805e3cb 992f631 2a2b4be d8b0170 992f631 d8b0170 2c86017 fe5ba0f 805e3cb f9449cf d8b0170 966b4a8 d8b0170 036bef7 d8b0170 4e32b83 d8b0170 966b4a8 8cd08a4 eae1771 d8b0170 f9449cf d8b0170 cff2130 6311068 d8b0170 8e1fc92 d8b0170 a6920aa 66f0f2b a6920aa 71ad8aa a6920aa 036bef7 4e32b83 036bef7 a6920aa e9b19af a6920aa eae1771 a6920aa f9449cf a6920aa cff2130 6311068 a6920aa eae1771 a6920aa 4147862 66f0f2b 4147862 71ad8aa 4147862 eae1771 4147862 eae1771 4147862 d8b0170 66f0f2b d8b0170 e0b3ce3 dfbe7f1 d8b0170 21ba788 d8b0170 6524df3 d8b0170 992f3e7 d8b0170 6311068 d8b0170 e0b3ce3 d8b0170 e0b3ce3 eae1771 d8b0170 eae1771 a6920aa eae1771 a6920aa e0b3ce3 eae1771 a6920aa d8b0170 992f631 d8b0170 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 |
#!/usr/bin/env python
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
import spaces
import os
import random
import uuid
import gradio as gr
import numpy as np
from PIL import Image
import torch
from diffusers import AutoencoderKL, StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
#from diffusers import AutoencoderKL
from typing import Tuple
#from transformers import AutoTokenizer, AutoModelForCausalLM
import paramiko
import gc
import time
#os.system("chmod +x ./cusparselt.sh")
#os.system("./cusparselt.sh")
#os.system("chmod +x ./cudnn.sh")
#os.system("./cudnn.sh")
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
torch.backends.cuda.preferred_blas_library="cublas"
torch.backends.cuda.preferred_linalg_library="cusolver"
torch.set_float32_matmul_precision("highest")
FTP_HOST = "1ink.us"
FTP_USER = "ford442"
FTP_PASS = "GoogleBez12!"
FTP_DIR = "1ink.us/stable_diff/" # Remote directory on FTP server
css = '''
.gradio-container{max-width: 570px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
DESCRIPTIONXX = """
## REALVISXL V5.0 BF16 ⚡⚡⚡⚡
"""
examples = [
"Many apples splashed with drops of water within a fancy bowl 4k, hdr --v 6.0 --style raw",
"A profile photo of a dog, brown background, shot on Leica M6 --ar 128:85 --v 6.0 --style raw",
]
MODEL_OPTIONS = {
"REALVISXL V5.0 BF16": "ford442/RealVisXL_V5.0_BF16",
}
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = 0
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
style_list = [
{
"name": "3840 x 2160",
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "2560 x 1440",
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "HD+",
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "Style Zero",
"prompt": "{prompt}",
"negative_prompt": "",
},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
DEFAULT_STYLE_NAME = "Style Zero"
STYLE_NAMES = list(styles.keys())
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
if style_name in styles:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
else:
p, n = styles[DEFAULT_STYLE_NAME]
if not negative:
negative = ""
return p.replace("{prompt}", positive), n + negative
def load_and_prepare_model(model_id):
model_dtypes = {"ford442/RealVisXL_V5.0_BF16": torch.bfloat16,}
dtype = model_dtypes.get(model_id, torch.bfloat16) # Default to float32 if not found
vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", torch_dtype=torch.bfloat16,safety_checker=None)
pipe = StableDiffusionXLPipeline.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
add_watermarker=False,
use_safetensors=True,
vae=vae,
)
sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", algorithm_type="sde-dpmsolver++")
pipe.scheduler=sched
pipe.to(device=device, dtype=torch.bfloat16)
return pipe
# Preload and compile both models
models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.items()}
MAX_SEED = np.iinfo(np.int32).max
def upload_to_ftp(filename):
try:
transport = paramiko.Transport((FTP_HOST, 22))
destination_path=FTP_DIR+filename
transport.connect(username = FTP_USER, password = FTP_PASS)
sftp = paramiko.SFTPClient.from_transport(transport)
sftp.put(filename, destination_path)
sftp.close()
transport.close()
print(f"Uploaded {filename} to FTP server")
except Exception as e:
print(f"FTP upload error: {e}")
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name,optimize=False,compress_level=0)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@spaces.GPU(duration=60)
def generate_60(
model_choice: str,
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
style_selection: str = "",
seed: int = 1,
width: int = 768,
height: int = 768,
guidance_scale: float = 4,
num_inference_steps: int = 250,
randomize_seed: bool = False,
use_resolution_binning: bool = True,
num_images: int = 1,
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
):
global models
pipe = models[model_choice]
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator(device='cpu').manual_seed(seed)
prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
options = {
"prompt": [prompt] * num_images,
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
"width": width,
"height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"generator": generator,
"output_type": "pil",
}
if use_resolution_binning:
options["use_resolution_binning"] = True
images = []
with torch.no_grad():
for i in range(0, num_images, BATCH_SIZE):
batch_options = options.copy()
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
if "negative_prompt" in batch_options:
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
images.extend(pipe(**batch_options).images)
sd_image_path = f"rv50_{seed}.png"
images[0].save(sd_image_path,optimize=False,compress_level=0)
upload_to_ftp(sd_image_path)
image_paths = [save_image(img) for img in images]
torch.cuda.empty_cache()
gc.collect()
return image_paths, seed
@spaces.GPU(duration=90)
def generate_90(
model_choice: str,
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
style_selection: str = "",
seed: int = 1,
width: int = 768,
height: int = 768,
guidance_scale: float = 4,
num_inference_steps: int = 250,
randomize_seed: bool = False,
use_resolution_binning: bool = True,
num_images: int = 1,
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
):
global models
pipe = models[model_choice]
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator(device='cpu').manual_seed(seed)
prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
options = {
"prompt": [prompt] * num_images,
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
"width": width,
"height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"generator": generator,
"output_type": "pil",
}
if use_resolution_binning:
options["use_resolution_binning"] = True
images = []
with torch.no_grad():
for i in range(0, num_images, BATCH_SIZE):
batch_options = options.copy()
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
if "negative_prompt" in batch_options:
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
images.extend(pipe(**batch_options).images)
sd_image_path = f"rv50_{seed}.png"
images[0].save(sd_image_path,optimize=False,compress_level=0)
upload_to_ftp(sd_image_path)
image_paths = [save_image(img) for img in images]
torch.cuda.empty_cache()
gc.collect()
return image_paths, seed
def load_predefined_images1():
predefined_images1 = [
"assets/7.png",
"assets/8.png",
"assets/9.png",
"assets/1.png",
"assets/2.png",
"assets/3.png",
"assets/4.png",
"assets/5.png",
"assets/6.png",
]
return predefined_images1
with gr.Blocks(css=css) as demo:
gr.Markdown(DESCRIPTIONXX)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button_60 = gr.Button("Run_60", scale=0)
run_button_90 = gr.Button("Run_90", scale=0)
result = gr.Gallery(label="Result", columns=1, show_label=False)
with gr.Row():
model_choice = gr.Dropdown(
label="Model Selection🔻",
choices=list(MODEL_OPTIONS.keys()),
value="REALVISXL V5.0 BF16"
)
style_selection = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="Quality Style",
)
num_images = gr.Slider(
label="Number of Images",
minimum=1,
maximum=5,
step=1,
value=1,
)
with gr.Row():
with gr.Column(scale=1):
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=5,
lines=4,
placeholder="Enter a negative prompt",
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=448,
maximum=MAX_IMAGE_SIZE,
step=64,
value=768,
)
height = gr.Slider(
label="Height",
minimum=448,
maximum=MAX_IMAGE_SIZE,
step=64,
value=768,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=6,
step=0.1,
value=4,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=10,
maximum=1000,
step=10,
value=250,
)
gr.Examples(
examples=examples,
inputs=prompt,
cache_examples=False
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
gr.on(
triggers=[
run_button_60.click,
],
# api_name="generate", # Add this line
fn=generate_60,
inputs=[
model_choice,
prompt,
negative_prompt,
use_negative_prompt,
style_selection,
seed,
width,
height,
guidance_scale,
num_inference_steps,
randomize_seed,
num_images,
],
outputs=[result, seed],
)
gr.on(
triggers=[
run_button_90.click,
],
# api_name="generate", # Add this line
fn=generate_90,
inputs=[
model_choice,
prompt,
negative_prompt,
use_negative_prompt,
style_selection,
seed,
width,
height,
guidance_scale,
num_inference_steps,
randomize_seed,
num_images,
],
outputs=[result, seed],
)
gr.Markdown("### REALVISXL V5.0")
predefined_gallery = gr.Gallery(label="REALVISXL V5.0", columns=3, show_label=False, value=load_predefined_images1())
#gr.Markdown("### LIGHTNING V5.0")
#predefined_gallery = gr.Gallery(label="LIGHTNING V5.0", columns=3, show_label=False, value=load_predefined_images())
gr.Markdown(
"""
<div style="text-align: justify;">
⚡Models used in the playground <a href="https://huggingface.co/SG161222/RealVisXL_V5.0">[REALVISXL V5.0]</a>, <a href="https://huggingface.co/SG161222/RealVisXL_V5.0_Lightning">[REALVISXL V5.0 LIGHTNING]</a> for image generation. Stable Diffusion XL piped (SDXL) model HF. This is the demo space for generating images using the Stable Diffusion XL models, with multiple different variants available.
</div>
""")
gr.Markdown(
"""
<div style="text-align: justify;">
⚡This is the demo space for generating images using Stable Diffusion XL with quality styles, different models, and types. Try the sample prompts to generate higher quality images. Try the sample prompts for generating higher quality images.
<a href='https://huggingface.co/spaces/prithivMLmods/Top-Prompt-Collection' target='_blank'>Try prompts</a>.
</div>
""")
gr.Markdown(
"""
<div style="text-align: justify;">
⚠️ Users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards.
</div>
""")
def text_generation(input_text, seed):
full_prompt = "Text Generator Application by ecarbo"
return full_prompt
title = "Text Generator Demo GPT-Neo"
description = "Text Generator Application by ecarbo"
if __name__ == "__main__":
demo_interface = demo.queue(max_size=50) # Remove .launch() here
text_gen_interface = gr.Interface(
fn=text_generation,
inputs=[
gr.Textbox(lines=1, label="Expand the following prompt to be more detailed and descriptive for image generation: "),
gr.Number(value=10, label="Enter seed number")
],
outputs=gr.Textbox(label="Text Generated"),
title=title,
description=description,
theme="huggingface"
)
combined_interface = gr.TabbedInterface([demo_interface, text_gen_interface], ["Image Generation", "Text Generation"])
combined_interface.launch(show_api=False) |