ford442's picture
Update ip_adapter/ip_adapter.py
a9eb742 verified
raw
history blame
15.2 kB
import os
from typing import List
import torch
from diffusers import StableDiffusionPipeline
from diffusers.pipelines.controlnet import MultiControlNetModel
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
from PIL import Image
from .attention_processor import IPAttnProcessor2_0 as IPAttnProcessor, AttnProcessor2_0 as AttnProcessor, CNAttnProcessor2_0 as CNAttnProcessor
from .resampler import Resampler
class ImageProjModel(torch.nn.Module):
"""Projection Model"""
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
super().__init__()
self.cross_attention_dim = cross_attention_dim
self.clip_extra_context_tokens = clip_extra_context_tokens
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
self.norm = torch.nn.LayerNorm(cross_attention_dim)
def forward(self, image_embeds):
embeds = image_embeds
clip_extra_context_tokens = self.proj(embeds).reshape(-1, self.clip_extra_context_tokens, self.cross_attention_dim)
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
return clip_extra_context_tokens
class IPAdapter:
def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4):
self.device = device
self.image_encoder_path = image_encoder_path
self.ip_ckpt = ip_ckpt
self.num_tokens = num_tokens
self.pipe = sd_pipe.to(self.device)
self.set_ip_adapter()
# load image encoder
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(self.device, dtype=torch.float32)
self.clip_image_processor = CLIPImageProcessor()
# image proj model
self.image_proj_model = self.init_proj()
self.load_ip_adapter()
def init_proj(self):
image_proj_model = ImageProjModel(
cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
clip_embeddings_dim=self.image_encoder.config.projection_dim,
clip_extra_context_tokens=self.num_tokens,
).to(self.device, dtype=torch.float32)
return image_proj_model
def set_ip_adapter(self):
unet = self.pipe.unet
attn_procs = {}
for name in unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
if cross_attention_dim is None:
attn_procs[name] = AttnProcessor()
else:
attn_procs[name] = IPAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim,
scale=1.0,num_tokens= self.num_tokens).to(self.device, dtype=torch.float32)
unet.set_attn_processor(attn_procs)
if hasattr(self.pipe, "controlnet"):
if isinstance(self.pipe.controlnet, MultiControlNetModel):
for controlnet in self.pipe.controlnet.nets:
controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
else:
self.pipe.controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
def update_state_dict(self, state_dict):
image_proj_dict = {}
ip_adapter_dict = {}
for k in state_dict.keys():
if k.startswith("image_proj_model"):
image_proj_dict[k.replace("image_proj_model.", "")] = state_dict[k]
if k.startswith("adapter_modules"):
ip_adapter_dict[k.replace("adapter_modules.", "")] = state_dict[k]
dict = {'image_proj': image_proj_dict,
'ip_adapter' : ip_adapter_dict
}
return dict
def load_ip_adapter(self):
state_dict = torch.load(self.ip_ckpt, map_location="cpu")
if "image_proj_model.proj.weight" in state_dict.keys():
state_dict = self.update_state_dict(state_dict)
self.image_proj_model.load_state_dict(state_dict["image_proj"])
ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
ip_layers.load_state_dict(state_dict["ip_adapter"])
@torch.inference_mode()
def get_image_embeds(self, pil_image):
if isinstance(pil_image, Image.Image):
pil_image = [pil_image]
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
print('clip_image_processor shape:',clip_image.shape)
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float32)).image_embeds
print('image_encoder shape:',clip_image_embeds.shape)
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
print('image_proj_model shape:',image_prompt_embeds.shape)
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(clip_image_embeds))
return image_prompt_embeds, uncond_image_prompt_embeds
def set_scale(self, scale):
for attn_processor in self.pipe.unet.attn_processors.values():
if isinstance(attn_processor, IPAttnProcessor):
attn_processor.scale = scale
def generate(
self,
pil_image,
prompt=None,
negative_prompt=None,
scale=1.0,
num_samples=4,
seed=-1,
guidance_scale=7.5,
num_inference_steps=30,
**kwargs,
):
self.set_scale(scale)
if isinstance(pil_image, List):
num_prompts = len(pil_image)
else:
num_prompts = 1
# if isinstance(pil_image, Image.Image):
# num_prompts = 1
# else:
# num_prompts = len(pil_image)
# print("num promp", num_prompts)
if prompt is None:
prompt = "best quality, high quality"
if negative_prompt is None:
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
if not isinstance(prompt, List):
prompt = [prompt] * num_prompts
if not isinstance(negative_prompt, List):
negative_prompt = [negative_prompt] * num_prompts
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image)
bs_embed, seq_len, _ = image_prompt_embeds.shape
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
with torch.inference_mode():
prompt_embeds = self.pipe._encode_prompt(
prompt, device=self.device, num_images_per_prompt=num_samples, do_classifier_free_guidance=True, negative_prompt=negative_prompt)
negative_prompt_embeds_, prompt_embeds_ = prompt_embeds.chunk(2)
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
images = self.pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
**kwargs,
).images
return images
class IPAdapterXL(IPAdapter):
"""SDXL"""
def get_scale(self):
for attn_processor in self.pipe.unet.attn_processors.values():
if isinstance(attn_processor, IPAttnProcessor):
print('IP attn_scale:')
print(attn_processor.scale)
for attn_processor in self.pipe.unet.attn_processors.values():
if isinstance(attn_processor, AttnProcessor):
print('UNET attn_scale:')
print(attn_processor.scale)
def generate(
self,
pil_image_1,
pil_image_2=None,
pil_image_3=None,
pil_image_4=None,
pil_image_5=None,
prompt=None,
negative_prompt=None,
text_scale=1.0,
ip_scale=1.0,
scale_1=1.0,
scale_2=1.0,
scale_3=1.0,
scale_4=1.0,
scale_5=1.0,
num_samples=1,
seed=-1,
num_inference_steps=30,
guidance_scale=7.5,
**kwargs,
):
#self.get_scale()
self.set_scale(ip_scale)
if isinstance(pil_image_1, Image.Image):
num_prompts = 1
else:
num_prompts = len(pil_image_1)
if prompt is None:
prompt = "best quality, high quality"
if negative_prompt is None:
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
if not isinstance(prompt, List):
prompt = [prompt] * num_prompts
if not isinstance(negative_prompt, List):
negative_prompt = [negative_prompt] * num_prompts
image_prompt_embeds_list = []
uncond_image_prompt_embeds_list = []
print('Using primary image.')
image_prompt_embeds_1, uncond_image_prompt_embeds_1 = self.get_image_embeds(pil_image_1)
image_prompt_embeds_1 = image_prompt_embeds_1 * scale_1
image_prompt_embeds_list.append(image_prompt_embeds_1)
uncond_image_prompt_embeds_list.append(uncond_image_prompt_embeds_1)
if pil_image_2 != None:
print('Using secondary image.')
image_prompt_embeds_2, uncond_image_prompt_embeds_2 = self.get_image_embeds(pil_image_2)
image_prompt_embeds_2 = image_prompt_embeds_2 * scale_2
image_prompt_embeds_list.append(image_prompt_embeds_2)
uncond_image_prompt_embeds_list.append(uncond_image_prompt_embeds_2)
if pil_image_3 != None:
print('Using tertiary image.')
image_prompt_embeds_3, uncond_image_prompt_embeds_3 = self.get_image_embeds(pil_image_3)
image_prompt_embeds_3 = image_prompt_embeds_3 * scale_3
image_prompt_embeds_list.append(image_prompt_embeds_3)
uncond_image_prompt_embeds_list.append(uncond_image_prompt_embeds_3)
if pil_image_4 != None:
print('Using quaternary image.')
image_prompt_embeds_4, uncond_image_prompt_embeds_4 = self.get_image_embeds(pil_image_4)
image_prompt_embeds_4 = image_prompt_embeds_4 * scale_4
image_prompt_embeds_list.append(image_prompt_embeds_4)
uncond_image_prompt_embeds_list.append(uncond_image_prompt_embeds_4)
if pil_image_5 != None:
print('Using quinary image.')
image_prompt_embeds_5, uncond_image_prompt_embeds_5 = self.get_image_embeds(pil_image_5)
image_prompt_embeds_5 = image_prompt_embeds_5 * scale_5
image_prompt_embeds_list.append(image_prompt_embeds_5)
uncond_image_prompt_embeds_list.append(uncond_image_prompt_embeds_5)
image_prompt_embeds = torch.cat(image_prompt_embeds_list).mean(dim=0).unsqueeze(0)
print('catted embeds list with mean and unsqueeze shape: ',image_prompt_embeds.shape)
bs_embed, seq_len, _ = image_prompt_embeds.shape
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
print('catted embeds repeat: ',image_prompt_embeds.shape)
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
print('viewed embeds: ',image_prompt_embeds.shape)
uncond_image_prompt_embeds = torch.cat(uncond_image_prompt_embeds_list).mean(dim=0).unsqueeze(0)
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
with torch.inference_mode():
prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = self.pipe.encode_prompt(
prompt, num_images_per_prompt=num_samples, do_classifier_free_guidance=True, negative_prompt=negative_prompt)
prompt_embeds = prompt_embeds * text_scale
prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
images = self.pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator,
**kwargs,
).images
return images
class IPAdapterPlus(IPAdapter):
"""IP-Adapter with fine-grained features"""
def init_proj(self):
image_proj_model = Resampler(
dim=self.pipe.unet.config.cross_attention_dim,
depth=4,
dim_head=64,
heads=12,
num_queries=self.num_tokens,
embedding_dim=self.image_encoder.config.hidden_size,
output_dim=self.pipe.unet.config.cross_attention_dim,
ff_mult=4
).to(self.device, dtype=torch.float32)
return image_proj_model
@torch.inference_mode()
def get_image_embeds(self, pil_image):
if isinstance(pil_image, Image.Image):
pil_image = [pil_image]
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
clip_image = clip_image.to(self.device, dtype=torch.float32)
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
uncond_clip_image_embeds = self.image_encoder(torch.zeros_like(clip_image), output_hidden_states=True).hidden_states[-2]
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
return image_prompt_embeds, uncond_image_prompt_embeds