Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from typing import List | |
import torch | |
from diffusers import StableDiffusionPipeline | |
from diffusers.pipelines.controlnet import MultiControlNetModel | |
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor | |
from PIL import Image | |
from .attention_processor import IPAttnProcessor2_0 as IPAttnProcessor, AttnProcessor2_0 as AttnProcessor, CNAttnProcessor2_0 as CNAttnProcessor | |
from .resampler import Resampler | |
class ImageProjModel(torch.nn.Module): | |
"""Projection Model""" | |
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4): | |
super().__init__() | |
self.cross_attention_dim = cross_attention_dim | |
self.clip_extra_context_tokens = clip_extra_context_tokens | |
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim) | |
self.norm = torch.nn.LayerNorm(cross_attention_dim) | |
def forward(self, image_embeds): | |
embeds = image_embeds | |
clip_extra_context_tokens = self.proj(embeds).reshape(-1, self.clip_extra_context_tokens, self.cross_attention_dim) | |
clip_extra_context_tokens = self.norm(clip_extra_context_tokens) | |
return clip_extra_context_tokens | |
class IPAdapter: | |
def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4): | |
self.device = device | |
self.image_encoder_path = image_encoder_path | |
self.ip_ckpt = ip_ckpt | |
self.num_tokens = num_tokens | |
self.pipe = sd_pipe.to(self.device) | |
self.set_ip_adapter() | |
# load image encoder | |
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(self.device, dtype=torch.bfloat16) | |
self.clip_image_processor = CLIPImageProcessor() | |
# image proj model | |
self.image_proj_model = self.init_proj() | |
self.load_ip_adapter() | |
def init_proj(self): | |
image_proj_model = ImageProjModel( | |
cross_attention_dim=self.pipe.unet.config.cross_attention_dim, | |
clip_embeddings_dim=self.image_encoder.config.projection_dim, | |
clip_extra_context_tokens=self.num_tokens, | |
).to(self.device, dtype=torch.bfloat16) | |
return image_proj_model | |
def set_ip_adapter(self): | |
unet = self.pipe.unet | |
attn_procs = {} | |
for name in unet.attn_processors.keys(): | |
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim | |
if name.startswith("mid_block"): | |
hidden_size = unet.config.block_out_channels[-1] | |
elif name.startswith("up_blocks"): | |
block_id = int(name[len("up_blocks.")]) | |
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] | |
elif name.startswith("down_blocks"): | |
block_id = int(name[len("down_blocks.")]) | |
hidden_size = unet.config.block_out_channels[block_id] | |
if cross_attention_dim is None: | |
attn_procs[name] = AttnProcessor() | |
else: | |
attn_procs[name] = IPAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, | |
scale=1.0,num_tokens= self.num_tokens).to(self.device, dtype=torch.bfloat16) | |
unet.set_attn_processor(attn_procs) | |
if hasattr(self.pipe, "controlnet"): | |
if isinstance(self.pipe.controlnet, MultiControlNetModel): | |
for controlnet in self.pipe.controlnet.nets: | |
controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens)) | |
else: | |
self.pipe.controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens)) | |
def update_state_dict(self, state_dict): | |
image_proj_dict = {} | |
ip_adapter_dict = {} | |
for k in state_dict.keys(): | |
if k.startswith("image_proj_model"): | |
image_proj_dict[k.replace("image_proj_model.", "")] = state_dict[k] | |
if k.startswith("adapter_modules"): | |
ip_adapter_dict[k.replace("adapter_modules.", "")] = state_dict[k] | |
dict = {'image_proj': image_proj_dict, | |
'ip_adapter' : ip_adapter_dict | |
} | |
return dict | |
def load_ip_adapter(self): | |
state_dict = torch.load(self.ip_ckpt, map_location="cpu") | |
if "image_proj_model.proj.weight" in state_dict.keys(): | |
state_dict = self.update_state_dict(state_dict) | |
self.image_proj_model.load_state_dict(state_dict["image_proj"]) | |
ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values()) | |
ip_layers.load_state_dict(state_dict["ip_adapter"]) | |
def get_image_embeds(self, pil_image): | |
if isinstance(pil_image, Image.Image): | |
pil_image = [pil_image] | |
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values | |
print('clip_image_processor shape:',clip_image.shape) | |
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.bfloat16)).image_embeds | |
print('image_encoder shape:',clip_image_embeds.shape) | |
image_prompt_embeds = self.image_proj_model(clip_image_embeds) | |
print('image_proj_model shape:',image_prompt_embeds.shape) | |
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(clip_image_embeds)) | |
return image_prompt_embeds, uncond_image_prompt_embeds | |
def set_scale(self, scale): | |
for attn_processor in self.pipe.unet.attn_processors.values(): | |
if isinstance(attn_processor, IPAttnProcessor): | |
attn_processor.scale = scale | |
def generate( | |
self, | |
pil_image, | |
prompt=None, | |
negative_prompt=None, | |
scale=1.0, | |
num_samples=4, | |
seed=-1, | |
guidance_scale=7.5, | |
num_inference_steps=30, | |
**kwargs, | |
): | |
self.set_scale(scale) | |
if isinstance(pil_image, List): | |
num_prompts = len(pil_image) | |
else: | |
num_prompts = 1 | |
# if isinstance(pil_image, Image.Image): | |
# num_prompts = 1 | |
# else: | |
# num_prompts = len(pil_image) | |
# print("num promp", num_prompts) | |
if prompt is None: | |
prompt = "best quality, high quality" | |
if negative_prompt is None: | |
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
if not isinstance(prompt, List): | |
prompt = [prompt] * num_prompts | |
if not isinstance(negative_prompt, List): | |
negative_prompt = [negative_prompt] * num_prompts | |
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image) | |
bs_embed, seq_len, _ = image_prompt_embeds.shape | |
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) | |
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) | |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
with torch.inference_mode(): | |
prompt_embeds = self.pipe._encode_prompt( | |
prompt, device=self.device, num_images_per_prompt=num_samples, do_classifier_free_guidance=True, negative_prompt=negative_prompt) | |
negative_prompt_embeds_, prompt_embeds_ = prompt_embeds.chunk(2) | |
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1) | |
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1) | |
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None | |
images = self.pipe( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
**kwargs, | |
).images | |
return images | |
class IPAdapterXL(IPAdapter): | |
"""SDXL""" | |
def get_scale(self): | |
for attn_processor in self.pipe.unet.attn_processors.values(): | |
if isinstance(attn_processor, IPAttnProcessor): | |
print('IP attn_scale:') | |
print(attn_processor.scale) | |
for attn_processor in self.pipe.unet.attn_processors.values(): | |
if isinstance(attn_processor, AttnProcessor): | |
print('UNET attn_scale:') | |
print(attn_processor.scale) | |
def generate( | |
self, | |
pil_image_1, | |
pil_image_2=None, | |
pil_image_3=None, | |
pil_image_4=None, | |
pil_image_5=None, | |
prompt=None, | |
negative_prompt=None, | |
text_scale=1.0, | |
ip_scale=1.0, | |
scale_1=1.0, | |
scale_2=1.0, | |
scale_3=1.0, | |
scale_4=1.0, | |
scale_5=1.0, | |
num_samples=1, | |
seed=-1, | |
num_inference_steps=30, | |
guidance_scale=7.5, | |
**kwargs, | |
): | |
#self.get_scale() | |
self.set_scale(ip_scale) | |
if isinstance(pil_image_1, Image.Image): | |
num_prompts = 1 | |
else: | |
num_prompts = len(pil_image_1) | |
if prompt is None: | |
prompt = "best quality, high quality" | |
if negative_prompt is None: | |
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
if not isinstance(prompt, List): | |
prompt = [prompt] * num_prompts | |
if not isinstance(negative_prompt, List): | |
negative_prompt = [negative_prompt] * num_prompts | |
image_prompt_embeds_list = [] | |
uncond_image_prompt_embeds_list = [] | |
print('Using primary image.') | |
image_prompt_embeds_1, uncond_image_prompt_embeds_1 = self.get_image_embeds(pil_image_1) | |
image_prompt_embeds_1 = image_prompt_embeds_1 * scale_1 | |
image_prompt_embeds_list.append(image_prompt_embeds_1) | |
uncond_image_prompt_embeds_list.append(uncond_image_prompt_embeds_1) | |
if pil_image_2 != None: | |
print('Using secondary image.') | |
image_prompt_embeds_2, uncond_image_prompt_embeds_2 = self.get_image_embeds(pil_image_2) | |
image_prompt_embeds_2 = image_prompt_embeds_2 * scale_2 | |
image_prompt_embeds_list.append(image_prompt_embeds_2) | |
uncond_image_prompt_embeds_list.append(uncond_image_prompt_embeds_2) | |
if pil_image_3 != None: | |
print('Using tertiary image.') | |
image_prompt_embeds_3, uncond_image_prompt_embeds_3 = self.get_image_embeds(pil_image_3) | |
image_prompt_embeds_3 = image_prompt_embeds_3 * scale_3 | |
image_prompt_embeds_list.append(image_prompt_embeds_3) | |
uncond_image_prompt_embeds_list.append(uncond_image_prompt_embeds_3) | |
if pil_image_4 != None: | |
print('Using quaternary image.') | |
image_prompt_embeds_4, uncond_image_prompt_embeds_4 = self.get_image_embeds(pil_image_4) | |
image_prompt_embeds_4 = image_prompt_embeds_4 * scale_4 | |
image_prompt_embeds_list.append(image_prompt_embeds_4) | |
uncond_image_prompt_embeds_list.append(uncond_image_prompt_embeds_4) | |
if pil_image_5 != None: | |
print('Using quinary image.') | |
image_prompt_embeds_5, uncond_image_prompt_embeds_5 = self.get_image_embeds(pil_image_5) | |
image_prompt_embeds_5 = image_prompt_embeds_5 * scale_5 | |
image_prompt_embeds_list.append(image_prompt_embeds_5) | |
uncond_image_prompt_embeds_list.append(uncond_image_prompt_embeds_5) | |
image_prompt_embeds = torch.cat(image_prompt_embeds_list).mean(dim=0).unsqueeze(0) | |
print('catted embeds list with mean and unsqueeze shape: ',image_prompt_embeds.shape) | |
bs_embed, seq_len, _ = image_prompt_embeds.shape | |
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) | |
print('catted embeds repeat: ',image_prompt_embeds.shape) | |
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
print('viewed embeds: ',image_prompt_embeds.shape) | |
uncond_image_prompt_embeds = torch.cat(uncond_image_prompt_embeds_list).mean(dim=0).unsqueeze(0) | |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) | |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
with torch.inference_mode(): | |
prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = self.pipe.encode_prompt( | |
prompt, num_images_per_prompt=num_samples, do_classifier_free_guidance=True, negative_prompt=negative_prompt) | |
prompt_embeds = prompt_embeds * text_scale | |
prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1) | |
negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1) | |
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None | |
images = self.pipe( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
generator=generator, | |
**kwargs, | |
).images | |
return images | |
class IPAdapterPlus(IPAdapter): | |
"""IP-Adapter with fine-grained features""" | |
def init_proj(self): | |
image_proj_model = Resampler( | |
dim=self.pipe.unet.config.cross_attention_dim, | |
depth=4, | |
dim_head=64, | |
heads=12, | |
num_queries=self.num_tokens, | |
embedding_dim=self.image_encoder.config.hidden_size, | |
output_dim=self.pipe.unet.config.cross_attention_dim, | |
ff_mult=4 | |
).to(self.device, dtype=torch.bfloat16) | |
return image_proj_model | |
def get_image_embeds(self, pil_image): | |
if isinstance(pil_image, Image.Image): | |
pil_image = [pil_image] | |
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values | |
clip_image = clip_image.to(self.device, dtype=torch.bfloat16) | |
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2] | |
image_prompt_embeds = self.image_proj_model(clip_image_embeds) | |
uncond_clip_image_embeds = self.image_encoder(torch.zeros_like(clip_image), output_hidden_states=True).hidden_states[-2] | |
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds) | |
return image_prompt_embeds, uncond_image_prompt_embeds | |