ford442 commited on
Commit
2450720
·
1 Parent(s): 2c124eb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -8
app.py CHANGED
@@ -15,8 +15,8 @@ from PIL import Image
15
  import torch
16
  from diffusers import AutoencoderKL, StableDiffusionXLPipeline
17
  from diffusers import EulerAncestralDiscreteScheduler
18
- #from diffusers import DPMSolverMultistepScheduler
19
- #from diffusers import DDIMScheduler
20
  from typing import Tuple
21
  import paramiko
22
  import gc
@@ -112,7 +112,7 @@ def load_and_prepare_model(model_id):
112
  vae = AutoencoderKL.from_pretrained('ford442/Juggernaut-XI-v11-fp32',subfolder='vae')
113
  # vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
114
  #sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
115
- sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler', steps_offset=1,timestep_spacing="trailing")
116
  #sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
117
  # sched = EulerAncestralDiscreteScheduler.from_config('ford442/RealVisXL_V5.0_BF16', beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
118
  pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0")
@@ -139,9 +139,9 @@ def load_and_prepare_model(model_id):
139
 
140
  #sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear",use_karras_sigmas=True, algorithm_type="dpmsolver++")
141
  #pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
142
- # for set timestep pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, algorithm_type="sde-dpmsolver++")
143
 
144
- pipe.scheduler = sched
145
  pipe.vae=vae.to(torch.bfloat16)
146
  pipe.unet=pipeX.unet.to(torch.bfloat16)
147
  #pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
@@ -229,7 +229,7 @@ def generate_30(
229
  "guidance_scale": guidance_scale,
230
  "num_inference_steps": num_inference_steps,
231
  "generator": generator,
232
- # "timesteps": sampling_schedule,
233
  "output_type": "pil",
234
  }
235
  if use_resolution_binning:
@@ -296,7 +296,7 @@ def generate_60(
296
  "guidance_scale": guidance_scale,
297
  "num_inference_steps": num_inference_steps,
298
  "generator": generator,
299
- # "timesteps": sampling_schedule,
300
  "output_type": "pil",
301
  }
302
  if use_resolution_binning:
@@ -363,7 +363,7 @@ def generate_90(
363
  "guidance_scale": guidance_scale,
364
  "num_inference_steps": num_inference_steps,
365
  "generator": generator,
366
- # "timesteps": sampling_schedule,
367
  "output_type": "pil",
368
  }
369
  if use_resolution_binning:
 
15
  import torch
16
  from diffusers import AutoencoderKL, StableDiffusionXLPipeline
17
  from diffusers import EulerAncestralDiscreteScheduler
18
+ from diffusers import DPMSolverMultistepScheduler
19
+
20
  from typing import Tuple
21
  import paramiko
22
  import gc
 
112
  vae = AutoencoderKL.from_pretrained('ford442/Juggernaut-XI-v11-fp32',subfolder='vae')
113
  # vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
114
  #sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
115
+ #sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler', steps_offset=1,timestep_spacing="trailing")
116
  #sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
117
  # sched = EulerAncestralDiscreteScheduler.from_config('ford442/RealVisXL_V5.0_BF16', beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
118
  pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0")
 
139
 
140
  #sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear",use_karras_sigmas=True, algorithm_type="dpmsolver++")
141
  #pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
142
+ pipeline.scheduler = DPMSolverMultistepScheduler.from_pretrained('SG161222/RealVisXL_V5.0', algorithm_type='sde-dpmsolver++')
143
 
144
+ #pipe.scheduler = sched
145
  pipe.vae=vae.to(torch.bfloat16)
146
  pipe.unet=pipeX.unet.to(torch.bfloat16)
147
  #pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
 
229
  "guidance_scale": guidance_scale,
230
  "num_inference_steps": num_inference_steps,
231
  "generator": generator,
232
+ "timesteps": sampling_schedule,
233
  "output_type": "pil",
234
  }
235
  if use_resolution_binning:
 
296
  "guidance_scale": guidance_scale,
297
  "num_inference_steps": num_inference_steps,
298
  "generator": generator,
299
+ "timesteps": sampling_schedule,
300
  "output_type": "pil",
301
  }
302
  if use_resolution_binning:
 
363
  "guidance_scale": guidance_scale,
364
  "num_inference_steps": num_inference_steps,
365
  "generator": generator,
366
+ "timesteps": sampling_schedule,
367
  "output_type": "pil",
368
  }
369
  if use_resolution_binning: