ford442 commited on
Commit
2adaaee
·
1 Parent(s): 7a76d42

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -23
app.py CHANGED
@@ -17,20 +17,14 @@ from diffusers import AutoencoderKL, StableDiffusionXLPipeline
17
  from diffusers import EulerAncestralDiscreteScheduler
18
  #from diffusers import DPMSolverMultistepScheduler
19
  #from diffusers import DDIMScheduler
20
- #from diffusers import AutoencoderKL
21
  from typing import Tuple
22
- #from transformers import AutoTokenizer, AutoModelForCausalLM
23
  import paramiko
24
  import gc
25
  import time
26
  import datetime
27
  from diffusers.schedulers import AysSchedules
28
 
29
- #os.system("chmod +x ./cusparselt.sh")
30
- #os.system("./cusparselt.sh")
31
- #os.system("chmod +x ./cudnn.sh")
32
- #os.system("./cudnn.sh")
33
- #from gradio import themes
34
 
35
  torch.backends.cuda.matmul.allow_tf32 = False
36
  torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
@@ -48,7 +42,6 @@ FTP_USER = "ford442"
48
  FTP_PASS = "GoogleBez12!"
49
  FTP_DIR = "1ink.us/stable_diff/" # Remote directory on FTP server
50
 
51
- #vae_url = 'https://1ink.us/files/myslrVAE_v10.safetensors'
52
  DESCRIPTIONXX = """
53
  ## REALVISXL V5.0 BF16 ⚡⚡⚡⚡
54
  """
@@ -113,21 +106,18 @@ def load_and_prepare_model(model_id):
113
  model_dtypes = {"ford442/RealVisXL_V5.0_BF16": torch.bfloat16,}
114
  dtype = model_dtypes.get(model_id, torch.bfloat16) # Default to float32 if not found
115
  #vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", safety_checker=None)
116
- vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae")
117
  #vae = AutoencoderKL.from_single_file('https://huggingface.co/ford442/sdxl-vae-bf16/mySLR/myslrVAE_v10.safetensors')
118
  #vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse",use_safetensors=True)
119
- #vae = AutoencoderKL.from_pretrained('ford442/Juggernaut-XI-v11-fp32',subfolder='vae')
120
  # vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
121
- # vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", safety_checker=None).to('cuda')
122
- #sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/Juggernaut-XI-v11-fp32', subfolder='scheduler',beta_schedule="scaled_linear",use_karras_sigmas=True)
123
  #sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
124
  sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler', steps_offset=1,timestep_spacing="trailing")
125
- #sched = EulerAncestralDiscreteScheduler(timestep_spacing="trailing",steps_offset=1)
126
  #sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
127
  # sched = EulerAncestralDiscreteScheduler.from_config('ford442/RealVisXL_V5.0_BF16', beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
128
- pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0")
129
-
130
  #pipeX = StableDiffusionXLPipeline.from_pretrained("ford442/Juggernaut-XI-v11-fp32",use_safetensors=True)
 
131
  pipe = StableDiffusionXLPipeline.from_pretrained(
132
  'ford442/RealVisXL_V5.0_BF16',
133
  # 'ford442/Juggernaut-XI-v11-fp32',
@@ -146,18 +136,15 @@ def load_and_prepare_model(model_id):
146
  # scheduler = EulerAncestralDiscreteScheduler.from_config(pipeX.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
147
  #scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset =1)
148
  )
 
149
  #sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear",use_karras_sigmas=True, algorithm_type="dpmsolver++")
150
  #pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
151
- #pipe.to('cuda')
152
 
153
  pipe.scheduler = sched
154
- pipe.vae=vae
155
- pipe.unet=pipeX.unet
156
- # pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
157
- #pipe.to(dtype=torch.bfloat16)
158
- #pipe.unet = pipeX.unet
159
  #pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
160
- #pipe.unet.to(torch.bfloat16)
161
 
162
  pipe.to(device)
163
  pipe.to(torch.bfloat16)
@@ -165,7 +152,6 @@ def load_and_prepare_model(model_id):
165
  pipe.unet.set_default_attn_processor()
166
  pipe.vae.set_default_attn_processor()
167
 
168
- #pipe.to(torch.bfloat16)
169
  print(f'Pipeline: ')
170
  print(f'_optional_components: {pipe._optional_components}')
171
  print(f'watermark: {pipe.watermark}')
 
17
  from diffusers import EulerAncestralDiscreteScheduler
18
  #from diffusers import DPMSolverMultistepScheduler
19
  #from diffusers import DDIMScheduler
 
20
  from typing import Tuple
 
21
  import paramiko
22
  import gc
23
  import time
24
  import datetime
25
  from diffusers.schedulers import AysSchedules
26
 
27
+ from gradio import themes
 
 
 
 
28
 
29
  torch.backends.cuda.matmul.allow_tf32 = False
30
  torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
 
42
  FTP_PASS = "GoogleBez12!"
43
  FTP_DIR = "1ink.us/stable_diff/" # Remote directory on FTP server
44
 
 
45
  DESCRIPTIONXX = """
46
  ## REALVISXL V5.0 BF16 ⚡⚡⚡⚡
47
  """
 
106
  model_dtypes = {"ford442/RealVisXL_V5.0_BF16": torch.bfloat16,}
107
  dtype = model_dtypes.get(model_id, torch.bfloat16) # Default to float32 if not found
108
  #vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", safety_checker=None)
109
+ #vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae")
110
  #vae = AutoencoderKL.from_single_file('https://huggingface.co/ford442/sdxl-vae-bf16/mySLR/myslrVAE_v10.safetensors')
111
  #vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse",use_safetensors=True)
112
+ vae = AutoencoderKL.from_pretrained('ford442/Juggernaut-XI-v11-fp32',subfolder='vae')
113
  # vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
 
 
114
  #sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
115
  sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler', steps_offset=1,timestep_spacing="trailing")
 
116
  #sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
117
  # sched = EulerAncestralDiscreteScheduler.from_config('ford442/RealVisXL_V5.0_BF16', beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
118
+ pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0",use_safetensors=False)
 
119
  #pipeX = StableDiffusionXLPipeline.from_pretrained("ford442/Juggernaut-XI-v11-fp32",use_safetensors=True)
120
+
121
  pipe = StableDiffusionXLPipeline.from_pretrained(
122
  'ford442/RealVisXL_V5.0_BF16',
123
  # 'ford442/Juggernaut-XI-v11-fp32',
 
136
  # scheduler = EulerAncestralDiscreteScheduler.from_config(pipeX.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
137
  #scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset =1)
138
  )
139
+
140
  #sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear",use_karras_sigmas=True, algorithm_type="dpmsolver++")
141
  #pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
142
+ # for set timestep pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, algorithm_type="sde-dpmsolver++")
143
 
144
  pipe.scheduler = sched
145
+ pipe.vae=vae.to(torch.bfloat16)
146
+ pipe.unet=pipeX.unet.to(torch.bfloat16)
 
 
 
147
  #pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
 
148
 
149
  pipe.to(device)
150
  pipe.to(torch.bfloat16)
 
152
  pipe.unet.set_default_attn_processor()
153
  pipe.vae.set_default_attn_processor()
154
 
 
155
  print(f'Pipeline: ')
156
  print(f'_optional_components: {pipe._optional_components}')
157
  print(f'watermark: {pipe.watermark}')