Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -17,20 +17,14 @@ from diffusers import AutoencoderKL, StableDiffusionXLPipeline
|
|
17 |
from diffusers import EulerAncestralDiscreteScheduler
|
18 |
#from diffusers import DPMSolverMultistepScheduler
|
19 |
#from diffusers import DDIMScheduler
|
20 |
-
#from diffusers import AutoencoderKL
|
21 |
from typing import Tuple
|
22 |
-
#from transformers import AutoTokenizer, AutoModelForCausalLM
|
23 |
import paramiko
|
24 |
import gc
|
25 |
import time
|
26 |
import datetime
|
27 |
from diffusers.schedulers import AysSchedules
|
28 |
|
29 |
-
|
30 |
-
#os.system("./cusparselt.sh")
|
31 |
-
#os.system("chmod +x ./cudnn.sh")
|
32 |
-
#os.system("./cudnn.sh")
|
33 |
-
#from gradio import themes
|
34 |
|
35 |
torch.backends.cuda.matmul.allow_tf32 = False
|
36 |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
@@ -48,7 +42,6 @@ FTP_USER = "ford442"
|
|
48 |
FTP_PASS = "GoogleBez12!"
|
49 |
FTP_DIR = "1ink.us/stable_diff/" # Remote directory on FTP server
|
50 |
|
51 |
-
#vae_url = 'https://1ink.us/files/myslrVAE_v10.safetensors'
|
52 |
DESCRIPTIONXX = """
|
53 |
## REALVISXL V5.0 BF16 ⚡⚡⚡⚡
|
54 |
"""
|
@@ -113,21 +106,18 @@ def load_and_prepare_model(model_id):
|
|
113 |
model_dtypes = {"ford442/RealVisXL_V5.0_BF16": torch.bfloat16,}
|
114 |
dtype = model_dtypes.get(model_id, torch.bfloat16) # Default to float32 if not found
|
115 |
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", safety_checker=None)
|
116 |
-
vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae")
|
117 |
#vae = AutoencoderKL.from_single_file('https://huggingface.co/ford442/sdxl-vae-bf16/mySLR/myslrVAE_v10.safetensors')
|
118 |
#vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse",use_safetensors=True)
|
119 |
-
|
120 |
# vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
|
121 |
-
# vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", safety_checker=None).to('cuda')
|
122 |
-
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/Juggernaut-XI-v11-fp32', subfolder='scheduler',beta_schedule="scaled_linear",use_karras_sigmas=True)
|
123 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
|
124 |
sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler', steps_offset=1,timestep_spacing="trailing")
|
125 |
-
#sched = EulerAncestralDiscreteScheduler(timestep_spacing="trailing",steps_offset=1)
|
126 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
|
127 |
# sched = EulerAncestralDiscreteScheduler.from_config('ford442/RealVisXL_V5.0_BF16', beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
128 |
-
pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0")
|
129 |
-
|
130 |
#pipeX = StableDiffusionXLPipeline.from_pretrained("ford442/Juggernaut-XI-v11-fp32",use_safetensors=True)
|
|
|
131 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
132 |
'ford442/RealVisXL_V5.0_BF16',
|
133 |
# 'ford442/Juggernaut-XI-v11-fp32',
|
@@ -146,18 +136,15 @@ def load_and_prepare_model(model_id):
|
|
146 |
# scheduler = EulerAncestralDiscreteScheduler.from_config(pipeX.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
147 |
#scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset =1)
|
148 |
)
|
|
|
149 |
#sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear",use_karras_sigmas=True, algorithm_type="dpmsolver++")
|
150 |
#pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
151 |
-
|
152 |
|
153 |
pipe.scheduler = sched
|
154 |
-
pipe.vae=vae
|
155 |
-
pipe.unet=pipeX.unet
|
156 |
-
# pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
157 |
-
#pipe.to(dtype=torch.bfloat16)
|
158 |
-
#pipe.unet = pipeX.unet
|
159 |
#pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
160 |
-
#pipe.unet.to(torch.bfloat16)
|
161 |
|
162 |
pipe.to(device)
|
163 |
pipe.to(torch.bfloat16)
|
@@ -165,7 +152,6 @@ def load_and_prepare_model(model_id):
|
|
165 |
pipe.unet.set_default_attn_processor()
|
166 |
pipe.vae.set_default_attn_processor()
|
167 |
|
168 |
-
#pipe.to(torch.bfloat16)
|
169 |
print(f'Pipeline: ')
|
170 |
print(f'_optional_components: {pipe._optional_components}')
|
171 |
print(f'watermark: {pipe.watermark}')
|
|
|
17 |
from diffusers import EulerAncestralDiscreteScheduler
|
18 |
#from diffusers import DPMSolverMultistepScheduler
|
19 |
#from diffusers import DDIMScheduler
|
|
|
20 |
from typing import Tuple
|
|
|
21 |
import paramiko
|
22 |
import gc
|
23 |
import time
|
24 |
import datetime
|
25 |
from diffusers.schedulers import AysSchedules
|
26 |
|
27 |
+
from gradio import themes
|
|
|
|
|
|
|
|
|
28 |
|
29 |
torch.backends.cuda.matmul.allow_tf32 = False
|
30 |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
|
|
42 |
FTP_PASS = "GoogleBez12!"
|
43 |
FTP_DIR = "1ink.us/stable_diff/" # Remote directory on FTP server
|
44 |
|
|
|
45 |
DESCRIPTIONXX = """
|
46 |
## REALVISXL V5.0 BF16 ⚡⚡⚡⚡
|
47 |
"""
|
|
|
106 |
model_dtypes = {"ford442/RealVisXL_V5.0_BF16": torch.bfloat16,}
|
107 |
dtype = model_dtypes.get(model_id, torch.bfloat16) # Default to float32 if not found
|
108 |
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", safety_checker=None)
|
109 |
+
#vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae")
|
110 |
#vae = AutoencoderKL.from_single_file('https://huggingface.co/ford442/sdxl-vae-bf16/mySLR/myslrVAE_v10.safetensors')
|
111 |
#vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse",use_safetensors=True)
|
112 |
+
vae = AutoencoderKL.from_pretrained('ford442/Juggernaut-XI-v11-fp32',subfolder='vae')
|
113 |
# vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
|
|
|
|
|
114 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
|
115 |
sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler', steps_offset=1,timestep_spacing="trailing")
|
|
|
116 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
|
117 |
# sched = EulerAncestralDiscreteScheduler.from_config('ford442/RealVisXL_V5.0_BF16', beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
118 |
+
pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0",use_safetensors=False)
|
|
|
119 |
#pipeX = StableDiffusionXLPipeline.from_pretrained("ford442/Juggernaut-XI-v11-fp32",use_safetensors=True)
|
120 |
+
|
121 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
122 |
'ford442/RealVisXL_V5.0_BF16',
|
123 |
# 'ford442/Juggernaut-XI-v11-fp32',
|
|
|
136 |
# scheduler = EulerAncestralDiscreteScheduler.from_config(pipeX.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
137 |
#scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset =1)
|
138 |
)
|
139 |
+
|
140 |
#sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear",use_karras_sigmas=True, algorithm_type="dpmsolver++")
|
141 |
#pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
142 |
+
# for set timestep pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, algorithm_type="sde-dpmsolver++")
|
143 |
|
144 |
pipe.scheduler = sched
|
145 |
+
pipe.vae=vae.to(torch.bfloat16)
|
146 |
+
pipe.unet=pipeX.unet.to(torch.bfloat16)
|
|
|
|
|
|
|
147 |
#pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
|
|
|
148 |
|
149 |
pipe.to(device)
|
150 |
pipe.to(torch.bfloat16)
|
|
|
152 |
pipe.unet.set_default_attn_processor()
|
153 |
pipe.vae.set_default_attn_processor()
|
154 |
|
|
|
155 |
print(f'Pipeline: ')
|
156 |
print(f'_optional_components: {pipe._optional_components}')
|
157 |
print(f'watermark: {pipe.watermark}')
|