ford442 commited on
Commit
7401e4f
·
verified ·
1 Parent(s): 73b4de6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -6
app.py CHANGED
@@ -214,6 +214,7 @@ def load_and_prepare_model():
214
 
215
  # Preload and compile both models
216
  pipe = load_and_prepare_model()
 
217
 
218
  MAX_SEED = np.iinfo(np.int32).max
219
 
@@ -270,7 +271,19 @@ def generate_30(
270
  samples=1,
271
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
272
  ):
273
- ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device)
 
 
 
 
 
 
 
 
 
 
 
 
274
  seed = random.randint(0, MAX_SEED)
275
  generator = torch.Generator(device='cuda').manual_seed(seed)
276
  if latent_file is not None: # Check if a latent file is provided
@@ -288,10 +301,12 @@ def generate_30(
288
  pil_image=sd_image_a,
289
  pil_image_2=sd_image_b,
290
  prompt=prompt,
 
 
291
  num_samples=samples,
 
292
  num_inference_steps=num_inference_steps,
293
  guidance_scale=guidance_scale,
294
- seed=seed
295
  )
296
  sd_image[0].save(filename,optimize=False,compress_level=0)
297
  upload_to_ftp(filename)
@@ -323,7 +338,6 @@ def generate_60(
323
  samples=1,
324
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
325
  ):
326
- ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device)
327
  seed = random.randint(0, MAX_SEED)
328
  generator = torch.Generator(device='cuda').manual_seed(seed)
329
  if latent_file is not None: # Check if a latent file is provided
@@ -341,10 +355,12 @@ def generate_60(
341
  pil_image=sd_image_a,
342
  pil_image_2=sd_image_b,
343
  prompt=prompt,
 
 
344
  num_samples=samples,
 
345
  num_inference_steps=num_inference_steps,
346
  guidance_scale=guidance_scale,
347
- seed=seed
348
  )
349
  sd_image[0].save(filename,optimize=False,compress_level=0)
350
  upload_to_ftp(filename)
@@ -376,7 +392,6 @@ def generate_90(
376
  samples=1,
377
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
378
  ):
379
- ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device)
380
  seed = random.randint(0, MAX_SEED)
381
  generator = torch.Generator(device='cuda').manual_seed(seed)
382
  if latent_file is not None: # Check if a latent file is provided
@@ -394,10 +409,12 @@ def generate_90(
394
  pil_image=sd_image_a,
395
  pil_image_2=sd_image_b,
396
  prompt=prompt,
 
 
397
  num_samples=samples,
 
398
  num_inference_steps=num_inference_steps,
399
  guidance_scale=guidance_scale,
400
- seed=seed
401
  )
402
  sd_image[0].save(filename,optimize=False,compress_level=0)
403
  upload_to_ftp(filename)
 
214
 
215
  # Preload and compile both models
216
  pipe = load_and_prepare_model()
217
+ ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device)
218
 
219
  MAX_SEED = np.iinfo(np.int32).max
220
 
 
271
  samples=1,
272
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
273
  ):
274
+ prompt: str = "",
275
+ negative_prompt: str = "",
276
+ use_negative_prompt: bool = False,
277
+ style_selection: str = "",
278
+ width: int = 768,
279
+ height: int = 768,
280
+ guidance_scale: float = 4,
281
+ num_inference_steps: int = 125,
282
+ latent_file = gr.File(), # Add latents file input
283
+ latent_file_2 = gr.File(), # Add latents file input
284
+ samples=1,
285
+ progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
286
+ ):
287
  seed = random.randint(0, MAX_SEED)
288
  generator = torch.Generator(device='cuda').manual_seed(seed)
289
  if latent_file is not None: # Check if a latent file is provided
 
301
  pil_image=sd_image_a,
302
  pil_image_2=sd_image_b,
303
  prompt=prompt,
304
+ negative_prompt=negative_prompt,
305
+ scale=1.0,
306
  num_samples=samples,
307
+ seed=seed,
308
  num_inference_steps=num_inference_steps,
309
  guidance_scale=guidance_scale,
 
310
  )
311
  sd_image[0].save(filename,optimize=False,compress_level=0)
312
  upload_to_ftp(filename)
 
338
  samples=1,
339
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
340
  ):
 
341
  seed = random.randint(0, MAX_SEED)
342
  generator = torch.Generator(device='cuda').manual_seed(seed)
343
  if latent_file is not None: # Check if a latent file is provided
 
355
  pil_image=sd_image_a,
356
  pil_image_2=sd_image_b,
357
  prompt=prompt,
358
+ negative_prompt=negative_prompt,
359
+ scale=1.0,
360
  num_samples=samples,
361
+ seed=seed,
362
  num_inference_steps=num_inference_steps,
363
  guidance_scale=guidance_scale,
 
364
  )
365
  sd_image[0].save(filename,optimize=False,compress_level=0)
366
  upload_to_ftp(filename)
 
392
  samples=1,
393
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
394
  ):
 
395
  seed = random.randint(0, MAX_SEED)
396
  generator = torch.Generator(device='cuda').manual_seed(seed)
397
  if latent_file is not None: # Check if a latent file is provided
 
409
  pil_image=sd_image_a,
410
  pil_image_2=sd_image_b,
411
  prompt=prompt,
412
+ negative_prompt=negative_prompt,
413
+ scale=1.0,
414
  num_samples=samples,
415
+ seed=seed,
416
  num_inference_steps=num_inference_steps,
417
  guidance_scale=guidance_scale,
 
418
  )
419
  sd_image[0].save(filename,optimize=False,compress_level=0)
420
  upload_to_ftp(filename)