ford442 commited on
Commit
758ffa0
·
1 Parent(s): 6499acd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -5
app.py CHANGED
@@ -113,21 +113,23 @@ def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str
113
  def load_and_prepare_model(model_id):
114
  model_dtypes = {"ford442/RealVisXL_V5.0_BF16": torch.bfloat16,}
115
  dtype = model_dtypes.get(model_id, torch.bfloat16) # Default to float32 if not found
116
- vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", torch_dtype=torch.bfloat16,safety_checker=None).to('cuda')
 
 
117
  pipe = StableDiffusionXLPipeline.from_pretrained(
118
  model_id,
119
- torch_dtype=torch.bfloat16,
120
  add_watermarker=False,
121
  use_safetensors=True,
122
  vae=vae,
 
123
  ).to('cuda')
124
  #pipe.to(device=device, dtype=torch.bfloat16)
125
 
126
  #sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", algorithm_type="dpmsolver++")
127
- sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
128
  #sched = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, beta_schedule="linear", algorithm_type="dpmsolver++")
129
  #sched = DDIMScheduler.from_config(pipe.scheduler.config)
130
- pipe.scheduler=sched
131
  return pipe
132
 
133
  # Preload and compile both models
@@ -223,7 +225,7 @@ def generate_60(
223
  num_inference_steps: int = 250,
224
  randomize_seed: bool = False,
225
  use_resolution_binning: bool = True,
226
- num_images: int = 1,
227
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
228
  ):
229
  global models
@@ -240,6 +242,7 @@ def generate_60(
240
  "num_inference_steps": num_inference_steps,
241
  "generator": generator,
242
  "output_type": "pil",
 
243
  }
244
  if use_resolution_binning:
245
  options["use_resolution_binning"] = True
 
113
  def load_and_prepare_model(model_id):
114
  model_dtypes = {"ford442/RealVisXL_V5.0_BF16": torch.bfloat16,}
115
  dtype = model_dtypes.get(model_id, torch.bfloat16) # Default to float32 if not found
116
+ # vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", torch_dtype=torch.bfloat16,safety_checker=None)
117
+ vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", safety_checker=None)
118
+ sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
119
  pipe = StableDiffusionXLPipeline.from_pretrained(
120
  model_id,
121
+ # torch_dtype=torch.bfloat16,
122
  add_watermarker=False,
123
  use_safetensors=True,
124
  vae=vae,
125
+ scheduler=sched
126
  ).to('cuda')
127
  #pipe.to(device=device, dtype=torch.bfloat16)
128
 
129
  #sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", algorithm_type="dpmsolver++")
 
130
  #sched = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, beta_schedule="linear", algorithm_type="dpmsolver++")
131
  #sched = DDIMScheduler.from_config(pipe.scheduler.config)
132
+ #pipe.scheduler=sched
133
  return pipe
134
 
135
  # Preload and compile both models
 
225
  num_inference_steps: int = 250,
226
  randomize_seed: bool = False,
227
  use_resolution_binning: bool = True,
228
+ num_images: int = 1,
229
  progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
230
  ):
231
  global models
 
242
  "num_inference_steps": num_inference_steps,
243
  "generator": generator,
244
  "output_type": "pil",
245
+ "target_size": (width,height),
246
  }
247
  if use_resolution_binning:
248
  options["use_resolution_binning"] = True