Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -214,7 +214,7 @@ def load_and_prepare_model():
|
|
214 |
return pipe
|
215 |
|
216 |
# Preload and compile both models
|
217 |
-
|
218 |
|
219 |
MAX_SEED = np.iinfo(np.int32).max
|
220 |
|
@@ -238,11 +238,6 @@ def save_image(img):
|
|
238 |
img.save(unique_name,optimize=False,compress_level=0)
|
239 |
return unique_name
|
240 |
|
241 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
242 |
-
if randomize_seed:
|
243 |
-
seed = random.randint(0, MAX_SEED)
|
244 |
-
return seed
|
245 |
-
|
246 |
def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
|
247 |
filename= f'tst_A_{timestamp}.txt'
|
248 |
with open(filename, "w") as f:
|
@@ -267,22 +262,16 @@ def generate_30(
|
|
267 |
negative_prompt: str = "",
|
268 |
use_negative_prompt: bool = False,
|
269 |
style_selection: str = "",
|
270 |
-
seed: int = 1,
|
271 |
width: int = 768,
|
272 |
height: int = 768,
|
273 |
guidance_scale: float = 4,
|
274 |
num_inference_steps: int = 125,
|
275 |
-
randomize_seed: bool = False,
|
276 |
latent_file = gr.File(), # Add latents file input
|
|
|
277 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
278 |
):
|
279 |
-
#torch.backends.cudnn.benchmark = False
|
280 |
-
#torch.cuda.empty_cache()
|
281 |
-
#gc.collect()
|
282 |
-
global models
|
283 |
-
pipe = models
|
284 |
ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device)
|
285 |
-
seed =
|
286 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
287 |
if latent_file is not None: # Check if a latent file is provided
|
288 |
sd_image_a = Image.open(latent_file.name)
|
@@ -293,8 +282,9 @@ def generate_30(
|
|
293 |
#with torch.no_grad():
|
294 |
sd_image = ip_model.generate(
|
295 |
pil_image=sd_image_a,
|
|
|
296 |
prompt=prompt,
|
297 |
-
num_samples=
|
298 |
num_inference_steps=num_inference_steps,
|
299 |
guidance_scale=guidance_scale,
|
300 |
seed=seed
|
@@ -312,30 +302,24 @@ def generate_30(
|
|
312 |
image_paths = [save_image(downscale1)]
|
313 |
else:
|
314 |
print('-- IMAGE REQUIRED --')
|
315 |
-
return image_paths
|
316 |
|
317 |
@spaces.GPU(duration=60)
|
318 |
def generate_60(
|
319 |
-
prompt: str,
|
320 |
negative_prompt: str = "",
|
321 |
use_negative_prompt: bool = False,
|
322 |
style_selection: str = "",
|
323 |
-
seed: int = 1,
|
324 |
width: int = 768,
|
325 |
height: int = 768,
|
326 |
guidance_scale: float = 4,
|
327 |
-
num_inference_steps: int =
|
328 |
-
randomize_seed: bool = False,
|
329 |
latent_file = gr.File(), # Add latents file input
|
|
|
330 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
331 |
):
|
332 |
-
#torch.backends.cudnn.benchmark = True
|
333 |
-
#torch.cuda.empty_cache()
|
334 |
-
#gc.collect()
|
335 |
-
global models
|
336 |
-
pipe = models
|
337 |
ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device)
|
338 |
-
seed =
|
339 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
340 |
if latent_file is not None: # Check if a latent file is provided
|
341 |
sd_image_a = Image.open(latent_file.name)
|
@@ -346,8 +330,9 @@ def generate_60(
|
|
346 |
#with torch.no_grad():
|
347 |
sd_image = ip_model.generate(
|
348 |
pil_image=sd_image_a,
|
|
|
349 |
prompt=prompt,
|
350 |
-
num_samples=
|
351 |
num_inference_steps=num_inference_steps,
|
352 |
guidance_scale=guidance_scale,
|
353 |
seed=seed
|
@@ -365,30 +350,24 @@ def generate_60(
|
|
365 |
image_paths = [save_image(downscale1)]
|
366 |
else:
|
367 |
print('-- IMAGE REQUIRED --')
|
368 |
-
return image_paths
|
369 |
|
370 |
@spaces.GPU(duration=90)
|
371 |
def generate_90(
|
372 |
-
prompt: str,
|
373 |
negative_prompt: str = "",
|
374 |
use_negative_prompt: bool = False,
|
375 |
style_selection: str = "",
|
376 |
-
seed: int = 1,
|
377 |
width: int = 768,
|
378 |
height: int = 768,
|
379 |
guidance_scale: float = 4,
|
380 |
-
num_inference_steps: int =
|
381 |
-
randomize_seed: bool = False,
|
382 |
latent_file = gr.File(), # Add latents file input
|
|
|
383 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
384 |
):
|
385 |
-
#torch.backends.cudnn.benchmark = True
|
386 |
-
#torch.cuda.empty_cache()
|
387 |
-
#gc.collect()
|
388 |
-
global models
|
389 |
-
pipe = models
|
390 |
ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device)
|
391 |
-
seed =
|
392 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
393 |
if latent_file is not None: # Check if a latent file is provided
|
394 |
sd_image_a = Image.open(latent_file.name)
|
@@ -399,8 +378,9 @@ def generate_90(
|
|
399 |
#with torch.no_grad():
|
400 |
sd_image = ip_model.generate(
|
401 |
pil_image=sd_image_a,
|
|
|
402 |
prompt=prompt,
|
403 |
-
num_samples=
|
404 |
num_inference_steps=num_inference_steps,
|
405 |
guidance_scale=guidance_scale,
|
406 |
seed=seed
|
@@ -418,7 +398,7 @@ def generate_90(
|
|
418 |
image_paths = [save_image(downscale1)]
|
419 |
else:
|
420 |
print('-- IMAGE REQUIRED --')
|
421 |
-
return image_paths
|
422 |
|
423 |
def load_predefined_images1():
|
424 |
predefined_images1 = [
|
@@ -465,6 +445,7 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
465 |
|
466 |
with gr.Row():
|
467 |
latent_file = gr.File(label="Image Prompt (Required)")
|
|
|
468 |
style_selection = gr.Radio(
|
469 |
show_label=True,
|
470 |
container=True,
|
@@ -484,10 +465,10 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
484 |
value="('deformed', 'distorted', 'disfigured':1.3),'not photorealistic':1.5, 'poorly drawn', 'bad anatomy', 'wrong anatomy', 'extra limb', 'missing limb', 'floating limbs', 'poorly drawn hands', 'poorly drawn feet', 'poorly drawn face':1.3, 'out of frame', 'extra limbs', 'bad anatomy', 'bad art', 'beginner', 'distorted face','amateur'",
|
485 |
visible=True,
|
486 |
)
|
487 |
-
|
488 |
label="Seed",
|
489 |
minimum=0,
|
490 |
-
maximum=
|
491 |
step=1,
|
492 |
value=0,
|
493 |
)
|
@@ -547,15 +528,14 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
547 |
negative_prompt,
|
548 |
use_negative_prompt,
|
549 |
style_selection,
|
550 |
-
seed,
|
551 |
width,
|
552 |
height,
|
553 |
guidance_scale,
|
554 |
num_inference_steps,
|
555 |
-
randomize_seed,
|
556 |
latent_file,
|
|
|
557 |
],
|
558 |
-
outputs=[result
|
559 |
)
|
560 |
|
561 |
gr.on(
|
@@ -569,15 +549,14 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
569 |
negative_prompt,
|
570 |
use_negative_prompt,
|
571 |
style_selection,
|
572 |
-
seed,
|
573 |
width,
|
574 |
height,
|
575 |
guidance_scale,
|
576 |
num_inference_steps,
|
577 |
-
randomize_seed,
|
578 |
latent_file,
|
|
|
579 |
],
|
580 |
-
outputs=[result
|
581 |
)
|
582 |
|
583 |
gr.on(
|
@@ -591,15 +570,14 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
591 |
negative_prompt,
|
592 |
use_negative_prompt,
|
593 |
style_selection,
|
594 |
-
seed,
|
595 |
width,
|
596 |
height,
|
597 |
guidance_scale,
|
598 |
num_inference_steps,
|
599 |
-
randomize_seed,
|
600 |
latent_file,
|
|
|
601 |
],
|
602 |
-
outputs=[result
|
603 |
)
|
604 |
|
605 |
gr.Markdown("### REALVISXL V5.0")
|
|
|
214 |
return pipe
|
215 |
|
216 |
# Preload and compile both models
|
217 |
+
pipe = load_and_prepare_model()
|
218 |
|
219 |
MAX_SEED = np.iinfo(np.int32).max
|
220 |
|
|
|
238 |
img.save(unique_name,optimize=False,compress_level=0)
|
239 |
return unique_name
|
240 |
|
|
|
|
|
|
|
|
|
|
|
241 |
def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
|
242 |
filename= f'tst_A_{timestamp}.txt'
|
243 |
with open(filename, "w") as f:
|
|
|
262 |
negative_prompt: str = "",
|
263 |
use_negative_prompt: bool = False,
|
264 |
style_selection: str = "",
|
|
|
265 |
width: int = 768,
|
266 |
height: int = 768,
|
267 |
guidance_scale: float = 4,
|
268 |
num_inference_steps: int = 125,
|
|
|
269 |
latent_file = gr.File(), # Add latents file input
|
270 |
+
latent_file_2 = gr.File(), # Add latents file input
|
271 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
272 |
):
|
|
|
|
|
|
|
|
|
|
|
273 |
ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device)
|
274 |
+
seed = random.randint(0, MAX_SEED)
|
275 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
276 |
if latent_file is not None: # Check if a latent file is provided
|
277 |
sd_image_a = Image.open(latent_file.name)
|
|
|
282 |
#with torch.no_grad():
|
283 |
sd_image = ip_model.generate(
|
284 |
pil_image=sd_image_a,
|
285 |
+
pil_image_2=sd_image_b,
|
286 |
prompt=prompt,
|
287 |
+
num_samples=samples,
|
288 |
num_inference_steps=num_inference_steps,
|
289 |
guidance_scale=guidance_scale,
|
290 |
seed=seed
|
|
|
302 |
image_paths = [save_image(downscale1)]
|
303 |
else:
|
304 |
print('-- IMAGE REQUIRED --')
|
305 |
+
return image_paths
|
306 |
|
307 |
@spaces.GPU(duration=60)
|
308 |
def generate_60(
|
309 |
+
prompt: str = "",
|
310 |
negative_prompt: str = "",
|
311 |
use_negative_prompt: bool = False,
|
312 |
style_selection: str = "",
|
|
|
313 |
width: int = 768,
|
314 |
height: int = 768,
|
315 |
guidance_scale: float = 4,
|
316 |
+
num_inference_steps: int = 125,
|
|
|
317 |
latent_file = gr.File(), # Add latents file input
|
318 |
+
latent_file_2 = gr.File(), # Add latents file input
|
319 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
320 |
):
|
|
|
|
|
|
|
|
|
|
|
321 |
ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device)
|
322 |
+
seed = random.randint(0, MAX_SEED)
|
323 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
324 |
if latent_file is not None: # Check if a latent file is provided
|
325 |
sd_image_a = Image.open(latent_file.name)
|
|
|
330 |
#with torch.no_grad():
|
331 |
sd_image = ip_model.generate(
|
332 |
pil_image=sd_image_a,
|
333 |
+
pil_image_2=sd_image_b,
|
334 |
prompt=prompt,
|
335 |
+
num_samples=samples,
|
336 |
num_inference_steps=num_inference_steps,
|
337 |
guidance_scale=guidance_scale,
|
338 |
seed=seed
|
|
|
350 |
image_paths = [save_image(downscale1)]
|
351 |
else:
|
352 |
print('-- IMAGE REQUIRED --')
|
353 |
+
return image_paths
|
354 |
|
355 |
@spaces.GPU(duration=90)
|
356 |
def generate_90(
|
357 |
+
prompt: str = "",
|
358 |
negative_prompt: str = "",
|
359 |
use_negative_prompt: bool = False,
|
360 |
style_selection: str = "",
|
|
|
361 |
width: int = 768,
|
362 |
height: int = 768,
|
363 |
guidance_scale: float = 4,
|
364 |
+
num_inference_steps: int = 125,
|
|
|
365 |
latent_file = gr.File(), # Add latents file input
|
366 |
+
latent_file_2 = gr.File(), # Add latents file input
|
367 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
368 |
):
|
|
|
|
|
|
|
|
|
|
|
369 |
ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device)
|
370 |
+
seed = random.randint(0, MAX_SEED)
|
371 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
372 |
if latent_file is not None: # Check if a latent file is provided
|
373 |
sd_image_a = Image.open(latent_file.name)
|
|
|
378 |
#with torch.no_grad():
|
379 |
sd_image = ip_model.generate(
|
380 |
pil_image=sd_image_a,
|
381 |
+
pil_image_2=sd_image_b,
|
382 |
prompt=prompt,
|
383 |
+
num_samples=samples,
|
384 |
num_inference_steps=num_inference_steps,
|
385 |
guidance_scale=guidance_scale,
|
386 |
seed=seed
|
|
|
398 |
image_paths = [save_image(downscale1)]
|
399 |
else:
|
400 |
print('-- IMAGE REQUIRED --')
|
401 |
+
return image_paths
|
402 |
|
403 |
def load_predefined_images1():
|
404 |
predefined_images1 = [
|
|
|
445 |
|
446 |
with gr.Row():
|
447 |
latent_file = gr.File(label="Image Prompt (Required)")
|
448 |
+
latent_file_2 = gr.File(label="Image Prompt 2 (Optional)")
|
449 |
style_selection = gr.Radio(
|
450 |
show_label=True,
|
451 |
container=True,
|
|
|
465 |
value="('deformed', 'distorted', 'disfigured':1.3),'not photorealistic':1.5, 'poorly drawn', 'bad anatomy', 'wrong anatomy', 'extra limb', 'missing limb', 'floating limbs', 'poorly drawn hands', 'poorly drawn feet', 'poorly drawn face':1.3, 'out of frame', 'extra limbs', 'bad anatomy', 'bad art', 'beginner', 'distorted face','amateur'",
|
466 |
visible=True,
|
467 |
)
|
468 |
+
samples = gr.Slider(
|
469 |
label="Seed",
|
470 |
minimum=0,
|
471 |
+
maximum=20,
|
472 |
step=1,
|
473 |
value=0,
|
474 |
)
|
|
|
528 |
negative_prompt,
|
529 |
use_negative_prompt,
|
530 |
style_selection,
|
|
|
531 |
width,
|
532 |
height,
|
533 |
guidance_scale,
|
534 |
num_inference_steps,
|
|
|
535 |
latent_file,
|
536 |
+
latent_file_2,
|
537 |
],
|
538 |
+
outputs=[result],
|
539 |
)
|
540 |
|
541 |
gr.on(
|
|
|
549 |
negative_prompt,
|
550 |
use_negative_prompt,
|
551 |
style_selection,
|
|
|
552 |
width,
|
553 |
height,
|
554 |
guidance_scale,
|
555 |
num_inference_steps,
|
|
|
556 |
latent_file,
|
557 |
+
latent_file_2,
|
558 |
],
|
559 |
+
outputs=[result],
|
560 |
)
|
561 |
|
562 |
gr.on(
|
|
|
570 |
negative_prompt,
|
571 |
use_negative_prompt,
|
572 |
style_selection,
|
|
|
573 |
width,
|
574 |
height,
|
575 |
guidance_scale,
|
576 |
num_inference_steps,
|
|
|
577 |
latent_file,
|
578 |
+
latent_file_2,
|
579 |
],
|
580 |
+
outputs=[result],
|
581 |
)
|
582 |
|
583 |
gr.Markdown("### REALVISXL V5.0")
|