ford442 commited on
Commit
9e59bb0
·
verified ·
1 Parent(s): 64c7fbd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -15
app.py CHANGED
@@ -285,14 +285,12 @@ def generate_30(
285
  ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device)
286
  seed = int(randomize_seed_fn(seed, randomize_seed))
287
  generator = torch.Generator(device='cuda').manual_seed(seed)
288
- if latent_file.any(): # Check if a latent file is provided
289
- #sd_image_a = torch.load(latent_file.name) # Load the latent
290
- #sd_image_a = latent_file #Image.open(latent_file)
291
  if not isinstance(latent_file, Image.Image):
292
- image = Image.fromarray(latent_file)
293
  image = image.resize((width, height)) # Example resize, adjust as needed
294
  image = image.convert("RGB") # Ensure it's a 3-channel image
295
- image = np.array(image)
296
  sd_image_a = torch.from_numpy(image).permute(2, 0, 1) / 127.5 - 1.0 # Normalize
297
  timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
298
  filename= f'rv_IP_{timestamp}.txt'
@@ -345,14 +343,12 @@ def generate_60(
345
  ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device)
346
  seed = int(randomize_seed_fn(seed, randomize_seed))
347
  generator = torch.Generator(device='cuda').manual_seed(seed)
348
- if latent_file.any(): # Check if a latent file is provided
349
- #sd_image_a = torch.load(latent_file.name) # Load the latent
350
- #sd_image_a = latent_file #Image.open(latent_file)
351
  if not isinstance(latent_file, Image.Image):
352
- image = Image.fromarray(latent_file)
353
  image = image.resize((width, height)) # Example resize, adjust as needed
354
  image = image.convert("RGB") # Ensure it's a 3-channel image
355
- image = np.array(image)
356
  sd_image_a = torch.from_numpy(image).permute(2, 0, 1) / 127.5 - 1.0 # Normalize
357
  timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
358
  filename= f'rv_IP_{timestamp}.txt'
@@ -405,14 +401,12 @@ def generate_90(
405
  ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device)
406
  seed = int(randomize_seed_fn(seed, randomize_seed))
407
  generator = torch.Generator(device='cuda').manual_seed(seed)
408
- if latent_file.any(): # Check if a latent file is provided
409
- #sd_image_a = torch.load(latent_file.name) # Load the latent
410
- #sd_image_a = latent_file #Image.open(latent_file)
411
  if not isinstance(latent_file, Image.Image):
412
- image = Image.fromarray(latent_file)
413
  image = image.resize((width, height)) # Example resize, adjust as needed
414
  image = image.convert("RGB") # Ensure it's a 3-channel image
415
- image = np.array(image)
416
  sd_image_a = torch.from_numpy(image).permute(2, 0, 1) / 127.5 - 1.0 # Normalize
417
  timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
418
  filename= f'rv_IP_{timestamp}.txt'
 
285
  ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device)
286
  seed = int(randomize_seed_fn(seed, randomize_seed))
287
  generator = torch.Generator(device='cuda').manual_seed(seed)
288
+ if latent_file is not None: # Check if a latent file is provided
 
 
289
  if not isinstance(latent_file, Image.Image):
290
+ image = Image.fromarray(latent_file)
291
  image = image.resize((width, height)) # Example resize, adjust as needed
292
  image = image.convert("RGB") # Ensure it's a 3-channel image
293
+ image = np.array(image)
294
  sd_image_a = torch.from_numpy(image).permute(2, 0, 1) / 127.5 - 1.0 # Normalize
295
  timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
296
  filename= f'rv_IP_{timestamp}.txt'
 
343
  ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device)
344
  seed = int(randomize_seed_fn(seed, randomize_seed))
345
  generator = torch.Generator(device='cuda').manual_seed(seed)
346
+ if latent_file is not None: # Check if a latent file is provided
 
 
347
  if not isinstance(latent_file, Image.Image):
348
+ image = Image.fromarray(latent_file)
349
  image = image.resize((width, height)) # Example resize, adjust as needed
350
  image = image.convert("RGB") # Ensure it's a 3-channel image
351
+ image = np.array(image)
352
  sd_image_a = torch.from_numpy(image).permute(2, 0, 1) / 127.5 - 1.0 # Normalize
353
  timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
354
  filename= f'rv_IP_{timestamp}.txt'
 
401
  ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device)
402
  seed = int(randomize_seed_fn(seed, randomize_seed))
403
  generator = torch.Generator(device='cuda').manual_seed(seed)
404
+ if latent_file is not None: # Check if a latent file is provided
 
 
405
  if not isinstance(latent_file, Image.Image):
406
+ image = Image.fromarray(latent_file)
407
  image = image.resize((width, height)) # Example resize, adjust as needed
408
  image = image.convert("RGB") # Ensure it's a 3-channel image
409
+ image = np.array(image)
410
  sd_image_a = torch.from_numpy(image).permute(2, 0, 1) / 127.5 - 1.0 # Normalize
411
  timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
412
  filename= f'rv_IP_{timestamp}.txt'