Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -285,14 +285,12 @@ def generate_30(
|
|
285 |
ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device)
|
286 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
287 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
288 |
-
if latent_file
|
289 |
-
#sd_image_a = torch.load(latent_file.name) # Load the latent
|
290 |
-
#sd_image_a = latent_file #Image.open(latent_file)
|
291 |
if not isinstance(latent_file, Image.Image):
|
292 |
-
image = Image.fromarray(latent_file)
|
293 |
image = image.resize((width, height)) # Example resize, adjust as needed
|
294 |
image = image.convert("RGB") # Ensure it's a 3-channel image
|
295 |
-
image = np.array(image)
|
296 |
sd_image_a = torch.from_numpy(image).permute(2, 0, 1) / 127.5 - 1.0 # Normalize
|
297 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
298 |
filename= f'rv_IP_{timestamp}.txt'
|
@@ -345,14 +343,12 @@ def generate_60(
|
|
345 |
ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device)
|
346 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
347 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
348 |
-
if latent_file
|
349 |
-
#sd_image_a = torch.load(latent_file.name) # Load the latent
|
350 |
-
#sd_image_a = latent_file #Image.open(latent_file)
|
351 |
if not isinstance(latent_file, Image.Image):
|
352 |
-
image = Image.fromarray(latent_file)
|
353 |
image = image.resize((width, height)) # Example resize, adjust as needed
|
354 |
image = image.convert("RGB") # Ensure it's a 3-channel image
|
355 |
-
image = np.array(image)
|
356 |
sd_image_a = torch.from_numpy(image).permute(2, 0, 1) / 127.5 - 1.0 # Normalize
|
357 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
358 |
filename= f'rv_IP_{timestamp}.txt'
|
@@ -405,14 +401,12 @@ def generate_90(
|
|
405 |
ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device)
|
406 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
407 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
408 |
-
if latent_file
|
409 |
-
#sd_image_a = torch.load(latent_file.name) # Load the latent
|
410 |
-
#sd_image_a = latent_file #Image.open(latent_file)
|
411 |
if not isinstance(latent_file, Image.Image):
|
412 |
-
image = Image.fromarray(latent_file)
|
413 |
image = image.resize((width, height)) # Example resize, adjust as needed
|
414 |
image = image.convert("RGB") # Ensure it's a 3-channel image
|
415 |
-
image = np.array(image)
|
416 |
sd_image_a = torch.from_numpy(image).permute(2, 0, 1) / 127.5 - 1.0 # Normalize
|
417 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
418 |
filename= f'rv_IP_{timestamp}.txt'
|
|
|
285 |
ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device)
|
286 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
287 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
288 |
+
if latent_file is not None: # Check if a latent file is provided
|
|
|
|
|
289 |
if not isinstance(latent_file, Image.Image):
|
290 |
+
image = Image.fromarray(latent_file)
|
291 |
image = image.resize((width, height)) # Example resize, adjust as needed
|
292 |
image = image.convert("RGB") # Ensure it's a 3-channel image
|
293 |
+
image = np.array(image)
|
294 |
sd_image_a = torch.from_numpy(image).permute(2, 0, 1) / 127.5 - 1.0 # Normalize
|
295 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
296 |
filename= f'rv_IP_{timestamp}.txt'
|
|
|
343 |
ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device)
|
344 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
345 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
346 |
+
if latent_file is not None: # Check if a latent file is provided
|
|
|
|
|
347 |
if not isinstance(latent_file, Image.Image):
|
348 |
+
image = Image.fromarray(latent_file)
|
349 |
image = image.resize((width, height)) # Example resize, adjust as needed
|
350 |
image = image.convert("RGB") # Ensure it's a 3-channel image
|
351 |
+
image = np.array(image)
|
352 |
sd_image_a = torch.from_numpy(image).permute(2, 0, 1) / 127.5 - 1.0 # Normalize
|
353 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
354 |
filename= f'rv_IP_{timestamp}.txt'
|
|
|
401 |
ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device)
|
402 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
403 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
404 |
+
if latent_file is not None: # Check if a latent file is provided
|
|
|
|
|
405 |
if not isinstance(latent_file, Image.Image):
|
406 |
+
image = Image.fromarray(latent_file)
|
407 |
image = image.resize((width, height)) # Example resize, adjust as needed
|
408 |
image = image.convert("RGB") # Ensure it's a 3-channel image
|
409 |
+
image = np.array(image)
|
410 |
sd_image_a = torch.from_numpy(image).permute(2, 0, 1) / 127.5 - 1.0 # Normalize
|
411 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
412 |
filename= f'rv_IP_{timestamp}.txt'
|