ford442 commited on
Commit
a61f315
·
1 Parent(s): 459afa3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -33,7 +33,7 @@ torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
33
  torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
34
  torch.backends.cudnn.allow_tf32 = False
35
  torch.backends.cudnn.deterministic = False
36
- torch.backends.cudnn.benchmark = False
37
  torch.backends.cuda.preferred_blas_library="cublas"
38
  torch.backends.cuda.preferred_linalg_library="cusolver"
39
 
@@ -192,8 +192,8 @@ def generate_60(
192
  options["use_resolution_binning"] = True
193
  images = []
194
  pipe.scheduler.set_timesteps(num_inference_steps,device)
195
- with torch.no_grad():
196
- for i in range(0, num_images, BATCH_SIZE):
197
  batch_options = options.copy()
198
  batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
199
  if "negative_prompt" in batch_options:
@@ -243,8 +243,8 @@ def generate_90(
243
  options["use_resolution_binning"] = True
244
  images = []
245
  pipe.scheduler.set_timesteps(num_inference_steps,device)
246
- with torch.no_grad():
247
- for i in range(0, num_images, BATCH_SIZE):
248
  batch_options = options.copy()
249
  batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
250
  if "negative_prompt" in batch_options:
 
33
  torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
34
  torch.backends.cudnn.allow_tf32 = False
35
  torch.backends.cudnn.deterministic = False
36
+ #torch.backends.cudnn.benchmark = False
37
  torch.backends.cuda.preferred_blas_library="cublas"
38
  torch.backends.cuda.preferred_linalg_library="cusolver"
39
 
 
192
  options["use_resolution_binning"] = True
193
  images = []
194
  pipe.scheduler.set_timesteps(num_inference_steps,device)
195
+ #with torch.no_grad():
196
+ for i in range(0, num_images, BATCH_SIZE):
197
  batch_options = options.copy()
198
  batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
199
  if "negative_prompt" in batch_options:
 
243
  options["use_resolution_binning"] = True
244
  images = []
245
  pipe.scheduler.set_timesteps(num_inference_steps,device)
246
+ #with torch.no_grad():
247
+ for i in range(0, num_images, BATCH_SIZE):
248
  batch_options = options.copy()
249
  batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
250
  if "negative_prompt" in batch_options: