Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -119,15 +119,15 @@ def load_and_prepare_model(model_id):
|
|
119 |
# vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
|
120 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
|
121 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler', steps_offset=1,timestep_spacing="trailing")
|
122 |
-
sched = EulerAncestralDiscreteScheduler.from_pretrained('SG161222/RealVisXL_V5.0', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
|
123 |
-
|
124 |
#pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0").to(torch.bfloat16)
|
125 |
#pipeX = StableDiffusionXLPipeline.from_pretrained("ford442/Juggernaut-XI-v11-fp32",use_safetensors=True)
|
126 |
|
127 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
#torch_dtype=torch.bfloat16,
|
132 |
add_watermarker=False,
|
133 |
# custom_pipeline="lpw_stable_diffusion_xl",
|
@@ -222,9 +222,9 @@ def uploadNote():
|
|
222 |
f.write(f"Guidance Scale: {guidance_scale} \n")
|
223 |
f.write(f"SPACE SETUP: \n")
|
224 |
f.write(f"Use Model Dtype: no \n")
|
225 |
-
f.write(f"Model Scheduler: Euler_a
|
226 |
f.write(f"Model VAE: juggernaut to bfloat before cuda \n")
|
227 |
-
f.write(f"Model UNET: default
|
228 |
f.write(f"Model HiDiffusion OFF \n")
|
229 |
upload_to_ftp(filename)
|
230 |
|
|
|
119 |
# vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
|
120 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
|
121 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler', steps_offset=1,timestep_spacing="trailing")
|
122 |
+
#sched = EulerAncestralDiscreteScheduler.from_pretrained('SG161222/RealVisXL_V5.0', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
|
123 |
+
sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler')
|
124 |
#pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0").to(torch.bfloat16)
|
125 |
#pipeX = StableDiffusionXLPipeline.from_pretrained("ford442/Juggernaut-XI-v11-fp32",use_safetensors=True)
|
126 |
|
127 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
128 |
+
'ford442/RealVisXL_V5.0_BF16',
|
129 |
+
#'ford442/Juggernaut-XI-v11-fp32',
|
130 |
+
# 'SG161222/RealVisXL_V5.0',
|
131 |
#torch_dtype=torch.bfloat16,
|
132 |
add_watermarker=False,
|
133 |
# custom_pipeline="lpw_stable_diffusion_xl",
|
|
|
222 |
f.write(f"Guidance Scale: {guidance_scale} \n")
|
223 |
f.write(f"SPACE SETUP: \n")
|
224 |
f.write(f"Use Model Dtype: no \n")
|
225 |
+
f.write(f"Model Scheduler: Euler_a default before cuda \n")
|
226 |
f.write(f"Model VAE: juggernaut to bfloat before cuda \n")
|
227 |
+
f.write(f"Model UNET: default ford442/RealVisXL_V5.0_BF16 \n")
|
228 |
f.write(f"Model HiDiffusion OFF \n")
|
229 |
upload_to_ftp(filename)
|
230 |
|