File size: 9,406 Bytes
b213d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import inspect

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import tqdm
from PIL import Image, ImageFilter


class LeffaPipeline(object):
    def __init__(
        self,
        model,
        repaint=True,
        device="cuda",
    ):
        self.vae = model.vae
        self.unet_encoder = model.unet_encoder
        self.unet = model.unet
        self.noise_scheduler = model.noise_scheduler
        self.repaint = repaint  # used for virtual try-on
        self.device = device

    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (Ξ·) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to Ξ· in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(
            inspect.signature(self.noise_scheduler.step).parameters.keys()
        )
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(
            inspect.signature(self.noise_scheduler.step).parameters.keys()
        )
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    @torch.no_grad()
    def __call__(
        self,
        src_image,
        ref_image,
        mask,
        densepose,
        num_inference_steps: int = 50,
        do_classifier_free_guidance=True,
        guidance_scale: float = 2.5,
        generator=None,
        eta=1.0,
        **kwargs,
    ):
        src_image = src_image.to(device=self.vae.device, dtype=self.vae.dtype)
        ref_image = ref_image.to(device=self.vae.device, dtype=self.vae.dtype)
        mask = mask.to(device=self.vae.device, dtype=self.vae.dtype)
        densepose = densepose.to(device=self.vae.device, dtype=self.vae.dtype)
        masked_image = src_image * (mask < 0.5)

        # 1. VAE encoding
        with torch.no_grad():
            # src_image_latent = self.vae.encode(src_image).latent_dist.sample()
            masked_image_latent = self.vae.encode(
                masked_image).latent_dist.sample()
            ref_image_latent = self.vae.encode(ref_image).latent_dist.sample()
        # src_image_latent = src_image_latent * self.vae.config.scaling_factor
        masked_image_latent = masked_image_latent * self.vae.config.scaling_factor
        ref_image_latent = ref_image_latent * self.vae.config.scaling_factor
        mask_latent = F.interpolate(
            mask, size=masked_image_latent.shape[-2:], mode="nearest")
        densepose_latent = F.interpolate(
            densepose, size=masked_image_latent.shape[-2:], mode="nearest")

        # 2. prepare noise
        noise = torch.randn_like(masked_image_latent)
        self.noise_scheduler.set_timesteps(
            num_inference_steps, device=self.device)
        timesteps = self.noise_scheduler.timesteps
        noise = noise * self.noise_scheduler.init_noise_sigma
        latent = noise

        # 3. classifier-free guidance
        if do_classifier_free_guidance:
            # src_image_latent = torch.cat([src_image_latent] * 2)
            masked_image_latent = torch.cat([masked_image_latent] * 2)
            ref_image_latent = torch.cat(
                [torch.zeros_like(ref_image_latent), ref_image_latent])
            mask_latent = torch.cat([mask_latent] * 2)
            densepose_latent = torch.cat([densepose_latent] * 2)

        # 6. Denoising loop
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
        num_warmup_steps = (
            len(timesteps) - num_inference_steps * self.noise_scheduler.order
        )

        with tqdm.tqdm(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latent if we are doing classifier free guidance
                _latent_model_input = (
                    torch.cat(
                        [latent] * 2) if do_classifier_free_guidance else latent
                )
                _latent_model_input = self.noise_scheduler.scale_model_input(
                    _latent_model_input, t
                )

                # prepare the input for the inpainting model
                latent_model_input = torch.cat(
                    [
                        _latent_model_input,
                        mask_latent,
                        masked_image_latent,
                        densepose_latent,
                    ],
                    dim=1,
                )

                down, reference_features = self.unet_encoder(
                    ref_image_latent, t, encoder_hidden_states=None, return_dict=False
                )
                reference_features = list(reference_features)

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=None,
                    cross_attention_kwargs=None,
                    added_cond_kwargs=None,
                    reference_features=reference_features,
                    return_dict=False,
                )[0]
                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (
                        noise_pred_cond - noise_pred_uncond
                    )

                if do_classifier_free_guidance and guidance_scale > 0.0:
                    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                    noise_pred = rescale_noise_cfg(
                        noise_pred,
                        noise_pred_cond,
                        guidance_rescale=guidance_scale,
                    )

                # compute the previous noisy sample x_t -> x_t-1
                latent = self.noise_scheduler.step(
                    noise_pred, t, latent, **extra_step_kwargs, return_dict=False
                )[0]
                # call the callback, if provided
                if i == len(timesteps) - 1 or (
                    (i + 1) > num_warmup_steps
                    and (i + 1) % self.noise_scheduler.order == 0
                ):
                    progress_bar.update()

        # Decode the final latent
        gen_image = latent_to_image(latent, self.vae)

        if self.repaint:
            src_image = (src_image / 2 + 0.5).clamp(0, 1)
            src_image = src_image.cpu().permute(0, 2, 3, 1).float().numpy()
            src_image = numpy_to_pil(src_image)
            mask = mask.cpu().permute(0, 2, 3, 1).float().numpy()
            mask = numpy_to_pil(mask)
            mask = [i.convert("RGB") for i in mask]
            gen_image = [
                repaint(_src_image, _mask, _gen_image)
                for _src_image, _mask, _gen_image in zip(src_image, mask, gen_image)
            ]

        return (gen_image,)


def latent_to_image(latent, vae):
    latent = 1 / vae.config.scaling_factor * latent
    image = vae.decode(latent).sample
    image = (image / 2 + 0.5).clamp(0, 1)
    # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
    image = image.cpu().permute(0, 2, 3, 1).float().numpy()
    image = numpy_to_pil(image)
    return image


def numpy_to_pil(images):
    """
    Convert a numpy image or a batch of images to a PIL image.
    """
    if images.ndim == 3:
        images = images[None, ...]
    images = (images * 255).round().astype("uint8")
    if images.shape[-1] == 1:
        # special case for grayscale (single channel) images
        pil_images = [Image.fromarray(image.squeeze(), mode="L")
                      for image in images]
    else:
        pil_images = [Image.fromarray(image) for image in images]

    return pil_images


def repaint(person, mask, result):
    _, h = result.size
    kernal_size = h // 100
    if kernal_size % 2 == 0:
        kernal_size += 1
    mask = mask.filter(ImageFilter.GaussianBlur(kernal_size))
    person_np = np.array(person)
    result_np = np.array(result)
    mask_np = np.array(mask) / 255
    repaint_result = person_np * (1 - mask_np) + result_np * mask_np
    repaint_result = Image.fromarray(repaint_result.astype(np.uint8))
    return repaint_result


def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
    """
    Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
    Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
    """
    std_text = noise_pred_text.std(
        dim=list(range(1, noise_pred_text.ndim)), keepdim=True
    )
    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
    # rescale the results from guidance (fixes overexposure)
    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
    # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
    noise_cfg = (
        guidance_rescale * noise_pred_rescaled +
        (1 - guidance_rescale) * noise_cfg
    )
    return noise_cfg