File size: 15,128 Bytes
b213d84
 
16c2627
b213d84
 
 
a72d826
 
 
 
 
b213d84
afadbd4
 
16c2627
24e151d
16c2627
68f6086
 
 
 
 
 
 
 
 
 
 
 
 
a72d826
 
 
 
 
 
 
 
 
 
68f6086
 
 
a72d826
 
 
 
 
 
 
68f6086
 
 
 
 
 
 
a72d826
 
 
 
 
 
 
 
 
 
 
 
 
68f6086
 
 
 
 
 
 
 
 
 
 
 
a72d826
 
 
 
 
 
 
 
 
 
 
 
68f6086
 
 
 
 
a72d826
 
 
 
 
 
 
 
 
 
 
 
 
68f6086
 
a72d826
68f6086
 
 
 
 
 
 
 
 
 
 
 
 
 
a72d826
 
 
 
68f6086
 
 
 
a72d826
68f6086
 
a72d826
 
68f6086
 
a72d826
68f6086
a72d826
 
68f6086
a72d826
 
24e151d
 
b213d84
 
68f6086
 
 
 
 
 
24e151d
a72d826
68f6086
a72d826
 
68f6086
24e151d
68f6086
24e151d
ee88584
24e151d
ee88584
68f6086
24e151d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68f6086
 
24e151d
 
 
 
 
 
 
 
 
 
 
 
 
 
68f6086
 
24e151d
 
 
 
 
 
 
 
 
 
 
 
 
68f6086
a72d826
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68f6086
 
 
 
 
 
 
 
 
a72d826
 
 
 
 
 
 
 
 
 
 
 
 
68f6086
a72d826
24e151d
 
 
 
 
 
 
 
 
 
 
 
 
 
9ed5c4d
68f6086
 
24e151d
 
 
 
 
 
 
 
 
 
 
 
 
 
68f6086
 
24e151d
 
 
 
 
 
 
 
 
 
 
 
 
68f6086
a72d826
 
 
 
 
 
68f6086
 
 
 
 
 
 
 
 
a72d826
 
 
 
 
 
 
 
 
 
 
 
 
68f6086
a72d826
16c2627
9b1ec91
 
a72d826
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import numpy as np
from PIL import Image
from huggingface_hub import snapshot_download
from leffa.transform import LeffaTransform
from leffa.model import LeffaModel
from leffa.inference import LeffaInference
from leffa_utils.garment_agnostic_mask_predictor import AutoMasker
from leffa_utils.densepose_predictor import DensePosePredictor
from leffa_utils.utils import resize_and_center, list_dir, get_agnostic_mask_hd, get_agnostic_mask_dc
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose

import gradio as gr

# Download checkpoints
snapshot_download(repo_id="franciszzj/Leffa", local_dir="./ckpts")


class LeffaPredictor(object):
    def __init__(self):
        self.mask_predictor = AutoMasker(
            densepose_path="./ckpts/densepose",
            schp_path="./ckpts/schp",
        )

        self.densepose_predictor = DensePosePredictor(
            config_path="./ckpts/densepose/densepose_rcnn_R_50_FPN_s1x.yaml",
            weights_path="./ckpts/densepose/model_final_162be9.pkl",
        )

        self.parsing = Parsing(
            atr_path="./ckpts/humanparsing/parsing_atr.onnx",
            lip_path="./ckpts/humanparsing/parsing_lip.onnx",
        )

        self.openpose = OpenPose(
            body_model_path="./ckpts/openpose/body_pose_model.pth",
        )

        vt_model_hd = LeffaModel(
            pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting",
            pretrained_model="./ckpts/virtual_tryon.pth",
        )
        self.vt_inference_hd = LeffaInference(model=vt_model_hd)

        vt_model_dc = LeffaModel(
            pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting",
            pretrained_model="./ckpts/virtual_tryon_dc.pth",
        )
        self.vt_inference_dc = LeffaInference(model=vt_model_dc)

        pt_model = LeffaModel(
            pretrained_model_name_or_path="./ckpts/stable-diffusion-xl-1.0-inpainting-0.1",
            pretrained_model="./ckpts/pose_transfer.pth",
        )
        self.pt_inference = LeffaInference(model=pt_model)

    def leffa_predict(
        self,
        src_image_path,
        ref_image_path,
        control_type,
        ref_acceleration=True,
        step=50,
        scale=2.5,
        seed=42,
        vt_model_type="viton_hd",
        vt_garment_type="upper_body",
        vt_repaint=False
    ):
        assert control_type in [
            "virtual_tryon", "pose_transfer"], "Invalid control type: {}".format(control_type)
        src_image = Image.open(src_image_path)
        ref_image = Image.open(ref_image_path)
        src_image = resize_and_center(src_image, 768, 1024)
        ref_image = resize_and_center(ref_image, 768, 1024)

        src_image_array = np.array(src_image)

        # Mask
        if control_type == "virtual_tryon":
            src_image = src_image.convert("RGB")
            model_parse, _ = self.parsing(src_image.resize((384, 512)))
            keypoints = self.openpose(src_image.resize((384, 512)))
            if vt_model_type == "viton_hd":
                mask = get_agnostic_mask_hd(
                    model_parse, keypoints, vt_garment_type)
            elif vt_model_type == "dress_code":
                mask = get_agnostic_mask_dc(
                    model_parse, keypoints, vt_garment_type)
            mask = mask.resize((768, 1024))
            # garment_type_hd = "upper" if vt_garment_type in [
            #     "upper_body", "dresses"] else "lower"
            # mask = self.mask_predictor(src_image, garment_type_hd)["mask"]
        elif control_type == "pose_transfer":
            mask = Image.fromarray(np.ones_like(src_image_array) * 255)

        # DensePose
        if control_type == "virtual_tryon":
            if vt_model_type == "viton_hd":
                src_image_seg_array = self.densepose_predictor.predict_seg(
                    src_image_array)[:, :, ::-1]
                src_image_seg = Image.fromarray(src_image_seg_array)
                densepose = src_image_seg
            elif vt_model_type == "dress_code":
                src_image_iuv_array = self.densepose_predictor.predict_iuv(
                    src_image_array)
                src_image_seg_array = src_image_iuv_array[:, :, 0:1]
                src_image_seg_array = np.concatenate(
                    [src_image_seg_array] * 3, axis=-1)
                src_image_seg = Image.fromarray(src_image_seg_array)
                densepose = src_image_seg
        elif control_type == "pose_transfer":
            src_image_iuv_array = self.densepose_predictor.predict_iuv(
                src_image_array)[:, :, ::-1]
            src_image_iuv = Image.fromarray(src_image_iuv_array)
            densepose = src_image_iuv

        # Leffa
        transform = LeffaTransform()

        data = {
            "src_image": [src_image],
            "ref_image": [ref_image],
            "mask": [mask],
            "densepose": [densepose],
        }
        data = transform(data)
        if control_type == "virtual_tryon":
            if vt_model_type == "viton_hd":
                inference = self.vt_inference_hd
            elif vt_model_type == "dress_code":
                inference = self.vt_inference_dc
        elif control_type == "pose_transfer":
            inference = self.pt_inference
        output = inference(
            data,
            ref_acceleration=ref_acceleration,
            num_inference_steps=step,
            guidance_scale=scale,
            seed=seed,
            repaint=vt_repaint,)
        gen_image = output["generated_image"][0]
        # gen_image.save("gen_image.png")
        return np.array(gen_image), np.array(mask), np.array(densepose)

    def leffa_predict_vt(self, src_image_path, ref_image_path, ref_acceleration, step, scale, seed, vt_model_type, vt_garment_type, vt_repaint):
        return self.leffa_predict(src_image_path, ref_image_path, "virtual_tryon", ref_acceleration, step, scale, seed, vt_model_type, vt_garment_type, vt_repaint)

    def leffa_predict_pt(self, src_image_path, ref_image_path, ref_acceleration, step, scale, seed):
        return self.leffa_predict(src_image_path, ref_image_path, "pose_transfer", ref_acceleration, step, scale, seed)


if __name__ == "__main__":

    leffa_predictor = LeffaPredictor()
    example_dir = "./ckpts/examples"
    person1_images = list_dir(f"{example_dir}/person1")
    person2_images = list_dir(f"{example_dir}/person2")
    garment_images = list_dir(f"{example_dir}/garment")

    title = "## Leffa: Learning Flow Fields in Attention for Controllable Person Image Generation"
    link = "[πŸ“š Paper](https://arxiv.org/abs/2412.08486) - [πŸ€– Code](https://github.com/franciszzj/Leffa) - [πŸ”₯ Demo](https://huggingface.co/spaces/franciszzj/Leffa) - [πŸ€— Model](https://huggingface.co/franciszzj/Leffa)"
    news = """## News
            - 02/Jan/2025, Update the mask generator to improve results. Add ref unet acceleration, boosting prediction speed by 30%. Include more controls in Advanced Options to enhance user experience. Enable intermediate result output for easier development. Enjoy using it!
            More news can be found in the [GitHub repository](https://github.com/franciszzj/Leffa).
            """
    description = "Leffa is a unified framework for controllable person image generation that enables precise manipulation of both appearance (i.e., virtual try-on) and pose (i.e., pose transfer)."
    note = "Note: The models used in the demo are trained solely on academic datasets. Virtual try-on uses VITON-HD/DressCode, and pose transfer uses DeepFashion."

    with gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.pink, secondary_hue=gr.themes.colors.red)).queue() as demo:
        gr.Markdown(title)
        gr.Markdown(link)
        gr.Markdown(news)
        gr.Markdown(description)

        with gr.Tab("Control Appearance (Virtual Try-on)"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("#### Person Image")
                    vt_src_image = gr.Image(
                        sources=["upload"],
                        type="filepath",
                        label="Person Image",
                        width=512,
                        height=512,
                    )

                    gr.Examples(
                        inputs=vt_src_image,
                        examples_per_page=10,
                        examples=person1_images,
                    )

                with gr.Column():
                    gr.Markdown("#### Garment Image")
                    vt_ref_image = gr.Image(
                        sources=["upload"],
                        type="filepath",
                        label="Garment Image",
                        width=512,
                        height=512,
                    )

                    gr.Examples(
                        inputs=vt_ref_image,
                        examples_per_page=10,
                        examples=garment_images,
                    )

                with gr.Column():
                    gr.Markdown("#### Generated Image")
                    vt_gen_image = gr.Image(
                        label="Generated Image",
                        width=512,
                        height=512,
                    )

                    with gr.Row():
                        vt_gen_button = gr.Button("Generate")

                    with gr.Accordion("Advanced Options", open=False):
                        vt_model_type = gr.Radio(
                            label="Model Type",
                            choices=[("VITON-HD (Recommended)", "viton_hd"),
                                     ("DressCode (Experimental)", "dress_code")],
                            value="viton_hd",
                        )

                        vt_garment_type = gr.Radio(
                            label="Garment Type",
                            choices=[("Upper", "upper_body"),
                                     ("Lower", "lower_body"),
                                     ("Dress", "dresses")],
                            value="upper_body",
                        )

                        vt_ref_acceleration = gr.Radio(
                            label="Accelerate Reference UNet (may slightly reduce performance)",
                            choices=[("True", True), ("False", False)],
                            value=False,
                        )

                        vt_repaint = gr.Radio(
                            label="Repaint Mode",
                            choices=[("True", True), ("False", False)],
                            value=False,
                        )

                        vt_step = gr.Number(
                            label="Inference Steps", minimum=30, maximum=100, step=1, value=50)

                        vt_scale = gr.Number(
                            label="Guidance Scale", minimum=0.1, maximum=5.0, step=0.1, value=2.5)

                        vt_seed = gr.Number(
                            label="Random Seed", minimum=-1, maximum=2147483647, step=1, value=42)

                    with gr.Accordion("Debug", open=False):
                        vt_mask = gr.Image(
                            label="Generated Mask",
                            width=256,
                            height=256,
                        )

                        vt_densepose = gr.Image(
                            label="Generated DensePose",
                            width=256,
                            height=256,
                        )

                vt_gen_button.click(fn=leffa_predictor.leffa_predict_vt, inputs=[
                    vt_src_image, vt_ref_image, vt_ref_acceleration, vt_step, vt_scale, vt_seed, vt_model_type, vt_garment_type, vt_repaint], outputs=[vt_gen_image, vt_mask, vt_densepose])

        with gr.Tab("Control Pose (Pose Transfer)"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("#### Person Image")
                    pt_ref_image = gr.Image(
                        sources=["upload"],
                        type="filepath",
                        label="Person Image",
                        width=512,
                        height=512,
                    )

                    gr.Examples(
                        inputs=pt_ref_image,
                        examples_per_page=10,
                        examples=person1_images,
                    )

                with gr.Column():
                    gr.Markdown("#### Target Pose Person Image")
                    pt_src_image = gr.Image(
                        sources=["upload"],
                        type="filepath",
                        label="Target Pose Person Image",
                        width=512,
                        height=512,
                    )

                    gr.Examples(
                        inputs=pt_src_image,
                        examples_per_page=10,
                        examples=person2_images,
                    )

                with gr.Column():
                    gr.Markdown("#### Generated Image")
                    pt_gen_image = gr.Image(
                        label="Generated Image",
                        width=512,
                        height=512,
                    )

                    with gr.Row():
                        pose_transfer_gen_button = gr.Button("Generate")

                    with gr.Accordion("Advanced Options", open=False):
                        pt_ref_acceleration = gr.Radio(
                            label="Accelerate Reference UNet",
                            choices=[("True", True), ("False", False)],
                            value=False,
                        )

                        pt_step = gr.Number(
                            label="Inference Steps", minimum=30, maximum=100, step=1, value=50)

                        pt_scale = gr.Number(
                            label="Guidance Scale", minimum=0.1, maximum=5.0, step=0.1, value=2.5)

                        pt_seed = gr.Number(
                            label="Random Seed", minimum=-1, maximum=2147483647, step=1, value=42)

                    with gr.Accordion("Debug", open=False):
                        pt_mask = gr.Image(
                            label="Generated Mask",
                            width=256,
                            height=256,
                        )

                        pt_densepose = gr.Image(
                            label="Generated DensePose",
                            width=256,
                            height=256,
                        )

                pose_transfer_gen_button.click(fn=leffa_predictor.leffa_predict_pt, inputs=[
                    pt_src_image, pt_ref_image, pt_ref_acceleration, pt_step, pt_scale, pt_seed], outputs=[pt_gen_image, pt_mask, pt_densepose])

        gr.Markdown(note)

        demo.launch(share=True, server_port=7860,
                    allowed_paths=["./ckpts/examples"])