Spaces:
Runtime error
Runtime error
Add Feature: Start Analysis at Time (s)
Browse files
app.py
CHANGED
@@ -12,11 +12,9 @@ os.system('pip install sentencepiece')
|
|
12 |
os.system('pip install python_speech_features')
|
13 |
os.system('pip install scikit-video')
|
14 |
os.system('pip install transformers')
|
15 |
-
os.system('pip install gradio
|
16 |
os.system('pip install numpy==1.23.3')
|
17 |
|
18 |
-
|
19 |
-
# sys.path.append('/home/user/app/av_hubert')
|
20 |
sys.path.append('/home/user/app/av_hubert/avhubert')
|
21 |
|
22 |
print(sys.path)
|
@@ -25,7 +23,6 @@ print(sys.argv, type(sys.argv))
|
|
25 |
sys.argv.append('dummy')
|
26 |
|
27 |
|
28 |
-
|
29 |
import dlib, cv2, os
|
30 |
import numpy as np
|
31 |
import skvideo
|
@@ -44,8 +41,6 @@ from huggingface_hub import hf_hub_download
|
|
44 |
import gradio as gr
|
45 |
from pytube import YouTube
|
46 |
|
47 |
-
# os.chdir('/home/user/app/av_hubert/avhubert')
|
48 |
-
|
49 |
user_dir = "/home/user/app/av_hubert/avhubert"
|
50 |
utils.import_user_module(Namespace(user_dir=user_dir))
|
51 |
data_dir = "/home/user/app/video"
|
@@ -88,7 +83,7 @@ def detect_landmark(image, detector, predictor):
|
|
88 |
coords[i] = (shape.part(i).x, shape.part(i).y)
|
89 |
return coords
|
90 |
|
91 |
-
def preprocess_video(input_video_path):
|
92 |
if torch.cuda.is_available():
|
93 |
detector = dlib.cnn_face_detection_model_v1(face_detector_path)
|
94 |
else:
|
@@ -98,7 +93,7 @@ def preprocess_video(input_video_path):
|
|
98 |
STD_SIZE = (256, 256)
|
99 |
mean_face_landmarks = np.load(mean_face_path)
|
100 |
stablePntsIDs = [33, 36, 39, 42, 45]
|
101 |
-
videogen = skvideo.io.vread(input_video_path)
|
102 |
frames = np.array([frame for frame in videogen])
|
103 |
landmarks = []
|
104 |
for frame in tqdm(frames):
|
@@ -141,6 +136,7 @@ def predict(process_video):
|
|
141 |
# ---- Gradio Layout -----
|
142 |
youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True)
|
143 |
video_in = gr.Video(label="Input Video", mirror_webcam=False, interactive=True)
|
|
|
144 |
video_out = gr.Video(label="Audio Visual Video", mirror_webcam=False, interactive=True)
|
145 |
demo = gr.Blocks()
|
146 |
demo.encrypt = False
|
@@ -161,7 +157,7 @@ with demo:
|
|
161 |
with gr.Row():
|
162 |
gr.Markdown('''
|
163 |
### Reading Lip movement with youtube link using Avhubert
|
164 |
-
##### Step 1a. Download video from youtube (Note:
|
165 |
##### Step 1b. You also can upload video directly
|
166 |
##### Step 2. Generating landmarks surrounding mouth area
|
167 |
##### Step 3. Reading lip movement.
|
@@ -176,21 +172,19 @@ with demo:
|
|
176 |
"https://www.youtube.com/watch?v=80yqL2KzBVw"],
|
177 |
label="Examples", inputs=[youtube_url_in])
|
178 |
with gr.Column():
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
with gr.Row():
|
185 |
video_in.render()
|
186 |
video_out.render()
|
187 |
with gr.Row():
|
188 |
detect_landmark_btn = gr.Button("Detect landmark")
|
189 |
-
detect_landmark_btn.click(preprocess_video, [video_in], [
|
190 |
-
video_out])
|
191 |
predict_btn = gr.Button("Predict")
|
192 |
-
predict_btn.click(predict, [video_out], [
|
193 |
-
text_output])
|
194 |
with gr.Row():
|
195 |
# video_lip = gr.Video(label="Audio Visual Video", mirror_webcam=False)
|
196 |
text_output.render()
|
|
|
12 |
os.system('pip install python_speech_features')
|
13 |
os.system('pip install scikit-video')
|
14 |
os.system('pip install transformers')
|
15 |
+
os.system('pip install gradio')
|
16 |
os.system('pip install numpy==1.23.3')
|
17 |
|
|
|
|
|
18 |
sys.path.append('/home/user/app/av_hubert/avhubert')
|
19 |
|
20 |
print(sys.path)
|
|
|
23 |
sys.argv.append('dummy')
|
24 |
|
25 |
|
|
|
26 |
import dlib, cv2, os
|
27 |
import numpy as np
|
28 |
import skvideo
|
|
|
41 |
import gradio as gr
|
42 |
from pytube import YouTube
|
43 |
|
|
|
|
|
44 |
user_dir = "/home/user/app/av_hubert/avhubert"
|
45 |
utils.import_user_module(Namespace(user_dir=user_dir))
|
46 |
data_dir = "/home/user/app/video"
|
|
|
83 |
coords[i] = (shape.part(i).x, shape.part(i).y)
|
84 |
return coords
|
85 |
|
86 |
+
def preprocess_video(input_video_path, input_start):
|
87 |
if torch.cuda.is_available():
|
88 |
detector = dlib.cnn_face_detection_model_v1(face_detector_path)
|
89 |
else:
|
|
|
93 |
STD_SIZE = (256, 256)
|
94 |
mean_face_landmarks = np.load(mean_face_path)
|
95 |
stablePntsIDs = [33, 36, 39, 42, 45]
|
96 |
+
videogen = skvideo.io.vread(input_video_path, inputdict={'-ss': str(input_start), '-t': '10'})
|
97 |
frames = np.array([frame for frame in videogen])
|
98 |
landmarks = []
|
99 |
for frame in tqdm(frames):
|
|
|
136 |
# ---- Gradio Layout -----
|
137 |
youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True)
|
138 |
video_in = gr.Video(label="Input Video", mirror_webcam=False, interactive=True)
|
139 |
+
video_start_in = gr.Number(label="Start Time in Seconds", value=1, interactive=True)
|
140 |
video_out = gr.Video(label="Audio Visual Video", mirror_webcam=False, interactive=True)
|
141 |
demo = gr.Blocks()
|
142 |
demo.encrypt = False
|
|
|
157 |
with gr.Row():
|
158 |
gr.Markdown('''
|
159 |
### Reading Lip movement with youtube link using Avhubert
|
160 |
+
##### Step 1a. Download video from youtube (Note: Only 10 seconds will be analyzed and the face should be stable for better result)
|
161 |
##### Step 1b. You also can upload video directly
|
162 |
##### Step 2. Generating landmarks surrounding mouth area
|
163 |
##### Step 3. Reading lip movement.
|
|
|
172 |
"https://www.youtube.com/watch?v=80yqL2KzBVw"],
|
173 |
label="Examples", inputs=[youtube_url_in])
|
174 |
with gr.Column():
|
175 |
+
youtube_url_in.render()
|
176 |
+
video_start_in.render()
|
177 |
+
download_youtube_btn = gr.Button("Download Youtube video")
|
178 |
+
download_youtube_btn.click(get_youtube, [youtube_url_in], [video_in])
|
179 |
+
print(video_in)
|
180 |
with gr.Row():
|
181 |
video_in.render()
|
182 |
video_out.render()
|
183 |
with gr.Row():
|
184 |
detect_landmark_btn = gr.Button("Detect landmark")
|
185 |
+
detect_landmark_btn.click(preprocess_video, [video_in, video_start_in], [video_out])
|
|
|
186 |
predict_btn = gr.Button("Predict")
|
187 |
+
predict_btn.click(predict, [video_out], [text_output])
|
|
|
188 |
with gr.Row():
|
189 |
# video_lip = gr.Video(label="Audio Visual Video", mirror_webcam=False)
|
190 |
text_output.render()
|