Spaces:
Sleeping
Sleeping
Commit
·
9d62c72
1
Parent(s):
2776201
snac_utils
Browse files- utils/snac_utils.py +146 -0
utils/snac_utils.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import time
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
|
6 |
+
class SnacConfig:
|
7 |
+
audio_vocab_size = 4096
|
8 |
+
padded_vocab_size = 4160
|
9 |
+
end_of_audio = 4097
|
10 |
+
|
11 |
+
|
12 |
+
snac_config = SnacConfig()
|
13 |
+
|
14 |
+
|
15 |
+
def get_time_str():
|
16 |
+
time_str = time.strftime("%Y%m%d_%H%M%S", time.localtime())
|
17 |
+
return time_str
|
18 |
+
|
19 |
+
|
20 |
+
def layershift(input_id, layer, stride=4160, shift=152000):
|
21 |
+
return input_id + shift + layer * stride
|
22 |
+
|
23 |
+
|
24 |
+
def generate_audio_data(snac_tokens, snacmodel, device=None):
|
25 |
+
audio = reconstruct_tensors(snac_tokens, device)
|
26 |
+
with torch.inference_mode():
|
27 |
+
audio_hat = snacmodel.decode(audio)
|
28 |
+
audio_data = audio_hat.cpu().numpy().astype(np.float64) * 32768.0
|
29 |
+
audio_data = audio_data.astype(np.int16)
|
30 |
+
audio_data = audio_data.tobytes()
|
31 |
+
return audio_data
|
32 |
+
|
33 |
+
|
34 |
+
def get_snac(list_output, index, nums_generate):
|
35 |
+
|
36 |
+
snac = []
|
37 |
+
start = index
|
38 |
+
for i in range(nums_generate):
|
39 |
+
snac.append("#")
|
40 |
+
for j in range(7):
|
41 |
+
snac.append(list_output[j][start - nums_generate - 5 + j + i])
|
42 |
+
return snac
|
43 |
+
|
44 |
+
|
45 |
+
def reconscruct_snac(output_list):
|
46 |
+
if len(output_list) == 8:
|
47 |
+
output_list = output_list[:-1]
|
48 |
+
output = []
|
49 |
+
for i in range(7):
|
50 |
+
output_list[i] = output_list[i][i + 1 :]
|
51 |
+
for i in range(len(output_list[-1])):
|
52 |
+
output.append("#")
|
53 |
+
for j in range(7):
|
54 |
+
output.append(output_list[j][i])
|
55 |
+
return output
|
56 |
+
|
57 |
+
|
58 |
+
def reconstruct_tensors(flattened_output, device=None):
|
59 |
+
"""Reconstructs the list of tensors from the flattened output."""
|
60 |
+
|
61 |
+
if device is None:
|
62 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
63 |
+
|
64 |
+
def count_elements_between_hashes(lst):
|
65 |
+
try:
|
66 |
+
# Find the index of the first '#'
|
67 |
+
first_index = lst.index("#")
|
68 |
+
# Find the index of the second '#' after the first
|
69 |
+
second_index = lst.index("#", first_index + 1)
|
70 |
+
# Count the elements between the two indices
|
71 |
+
return second_index - first_index - 1
|
72 |
+
except ValueError:
|
73 |
+
# Handle the case where there aren't enough '#' symbols
|
74 |
+
return "List does not contain two '#' symbols"
|
75 |
+
|
76 |
+
def remove_elements_before_hash(flattened_list):
|
77 |
+
try:
|
78 |
+
# Find the index of the first '#'
|
79 |
+
first_hash_index = flattened_list.index("#")
|
80 |
+
# Return the list starting from the first '#'
|
81 |
+
return flattened_list[first_hash_index:]
|
82 |
+
except ValueError:
|
83 |
+
# Handle the case where there is no '#'
|
84 |
+
return "List does not contain the symbol '#'"
|
85 |
+
|
86 |
+
def list_to_torch_tensor(tensor1):
|
87 |
+
# Convert the list to a torch tensor
|
88 |
+
tensor = torch.tensor(tensor1)
|
89 |
+
# Reshape the tensor to have size (1, n)
|
90 |
+
tensor = tensor.unsqueeze(0)
|
91 |
+
return tensor
|
92 |
+
|
93 |
+
flattened_output = remove_elements_before_hash(flattened_output)
|
94 |
+
codes = []
|
95 |
+
tensor1 = []
|
96 |
+
tensor2 = []
|
97 |
+
tensor3 = []
|
98 |
+
tensor4 = []
|
99 |
+
|
100 |
+
n_tensors = count_elements_between_hashes(flattened_output)
|
101 |
+
if n_tensors == 7:
|
102 |
+
for i in range(0, len(flattened_output), 8):
|
103 |
+
|
104 |
+
tensor1.append(flattened_output[i + 1])
|
105 |
+
tensor2.append(flattened_output[i + 2])
|
106 |
+
tensor3.append(flattened_output[i + 3])
|
107 |
+
tensor3.append(flattened_output[i + 4])
|
108 |
+
|
109 |
+
tensor2.append(flattened_output[i + 5])
|
110 |
+
tensor3.append(flattened_output[i + 6])
|
111 |
+
tensor3.append(flattened_output[i + 7])
|
112 |
+
codes = [
|
113 |
+
list_to_torch_tensor(tensor1).to(device),
|
114 |
+
list_to_torch_tensor(tensor2).to(device),
|
115 |
+
list_to_torch_tensor(tensor3).to(device),
|
116 |
+
]
|
117 |
+
|
118 |
+
if n_tensors == 15:
|
119 |
+
for i in range(0, len(flattened_output), 16):
|
120 |
+
|
121 |
+
tensor1.append(flattened_output[i + 1])
|
122 |
+
tensor2.append(flattened_output[i + 2])
|
123 |
+
tensor3.append(flattened_output[i + 3])
|
124 |
+
tensor4.append(flattened_output[i + 4])
|
125 |
+
tensor4.append(flattened_output[i + 5])
|
126 |
+
tensor3.append(flattened_output[i + 6])
|
127 |
+
tensor4.append(flattened_output[i + 7])
|
128 |
+
tensor4.append(flattened_output[i + 8])
|
129 |
+
|
130 |
+
tensor2.append(flattened_output[i + 9])
|
131 |
+
tensor3.append(flattened_output[i + 10])
|
132 |
+
tensor4.append(flattened_output[i + 11])
|
133 |
+
tensor4.append(flattened_output[i + 12])
|
134 |
+
tensor3.append(flattened_output[i + 13])
|
135 |
+
tensor4.append(flattened_output[i + 14])
|
136 |
+
tensor4.append(flattened_output[i + 15])
|
137 |
+
|
138 |
+
codes = [
|
139 |
+
list_to_torch_tensor(tensor1).to(device),
|
140 |
+
list_to_torch_tensor(tensor2).to(device),
|
141 |
+
list_to_torch_tensor(tensor3).to(device),
|
142 |
+
list_to_torch_tensor(tensor4).to(device),
|
143 |
+
]
|
144 |
+
|
145 |
+
return codes
|
146 |
+
|