Spaces:
Running
Running
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
from typing import Callable, Optional | |
from torch import Tensor, nn | |
import torch.nn.functional as F | |
class SwiGLUFFN(nn.Module): | |
def __init__( | |
self, | |
in_features: int, | |
hidden_features: Optional[int] = None, | |
out_features: Optional[int] = None, | |
act_layer: Callable[..., nn.Module] = None, | |
drop: float = 0.0, | |
bias: bool = True, | |
) -> None: | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.w12 = nn.Linear(in_features, 2 * hidden_features, bias=bias) | |
self.w3 = nn.Linear(hidden_features, out_features, bias=bias) | |
def forward(self, x: Tensor) -> Tensor: | |
x12 = self.w12(x) | |
x1, x2 = x12.chunk(2, dim=-1) | |
hidden = F.silu(x1) * x2 | |
return self.w3(hidden) | |
try: | |
from xformers.ops import SwiGLU | |
XFORMERS_AVAILABLE = True | |
except ImportError: | |
SwiGLU = SwiGLUFFN | |
XFORMERS_AVAILABLE = False | |
class SwiGLUFFNFused(SwiGLU): | |
def __init__( | |
self, | |
in_features: int, | |
hidden_features: Optional[int] = None, | |
out_features: Optional[int] = None, | |
act_layer: Callable[..., nn.Module] = None, | |
drop: float = 0.0, | |
bias: bool = True, | |
) -> None: | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8 | |
super().__init__( | |
in_features=in_features, | |
hidden_features=hidden_features, | |
out_features=out_features, | |
bias=bias, | |
) | |